- 相關(guān)推薦
高中幾何證明定理
高中幾何證明定理一.直線與平面平行的(判定)
1.判定定理.平面外一條直線如果平行于平面內(nèi)的一條直線,那么這條直線與這個(gè)平面平行.
2.應(yīng)用:反證法(證明直線不平行于平面)
二.平面與平面平行的(判定)
1. 判定定理:一個(gè)平面上兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
2.關(guān)鍵:判定兩個(gè)平面是否有公共點(diǎn)
三.直線與平面平行的(性質(zhì))
1.性質(zhì):一條直線與一個(gè)平面平行,則過該直線的任一與此平面的交線與該直線平行 2.應(yīng)用:過這條直線做一個(gè)平面與已知平面相交,那么交線平行于這條直線
四.平面與平面平行的(性質(zhì))
1.性質(zhì):如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么他們的交線平行
2.應(yīng)用:通過做與兩個(gè)平行平面都相交的平面得到交線,實(shí)現(xiàn)線線平行
五:直線與平面垂直的(定理)
1.判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直
2.應(yīng)用:如果一條直線與一個(gè)平面垂直,那么這條直線垂直于這個(gè)平面內(nèi)所有的直線(線面垂直→線線垂直)
六.平面與平面的垂直(定理)
1.一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直
(或者做二面角判定)
2.應(yīng)用:在其中一個(gè)平面內(nèi)找到或做出另一個(gè)平面的垂線,即實(shí)現(xiàn)線面垂直證面面垂直的轉(zhuǎn)換
七.平面與平面垂直的(性質(zhì))
1.性質(zhì)一:垂直于同一個(gè)平面的兩條垂線平行
2.性質(zhì)二:如果兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直
3.性質(zhì)三:如果兩個(gè)平面互相垂直,那么經(jīng)過第一個(gè)平面內(nèi)的`一點(diǎn)垂直于第二個(gè)平面內(nèi)的直線,在第一個(gè)平面內(nèi)(性質(zhì)三沒什么用,可以不用記)
以上,是立體幾何的定理和性質(zhì)整理.是一定要記住的基本!。
想要變-態(tài)的這里多的是- -
歐拉定理&歐拉線&歐拉公式(不一樣)
九點(diǎn)圓定理
葛爾剛點(diǎn)
費(fèi)馬定理(費(fèi)馬點(diǎn)(也叫做費(fèi)爾馬點(diǎn)))
海倫-公式
共角比例定理
張角定理
帕斯卡定理
曼海姆定理
卡諾定理
芬斯勒-哈德維格不等式(幾何的)
外森匹克不等式(同上)
琴生不等式(同上)
塞瓦定理
梅涅勞斯定理
斯坦納定理
托勒密定理
分角線定理(與角分線定理不同)
斯特瓦爾特定理
切點(diǎn)弦定理
西姆松定理。
【高中幾何證明定理】相關(guān)文章:
幾何證明定理12-07
高中幾何證明12-07
高中數(shù)學(xué)定理證明12-07
初中幾何證明12-07
正弦定理的證明12-07
正弦定理證明12-07
勾股定理證明12-07
定理與證明 習(xí)題04-24