- 相關(guān)推薦
高中數(shù)學(xué)教案:圓的標(biāo)準(zhǔn)方程
1.教學(xué)目標(biāo)
(1)知識(shí)目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;
2.會(huì)由圓的方程寫(xiě)出圓的半徑和圓心,能根據(jù)條件寫(xiě)出圓的方程.
(2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問(wèn)題的能力;
2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).
(3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點(diǎn).難點(diǎn)
(1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.
3.教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境(啟迪思維)
問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側(cè)行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛?cè)脒@個(gè)隧道?
[引導(dǎo)] 畫(huà)圖建系
[學(xué)生活動(dòng)]:嘗試寫(xiě)出曲線(xiàn)的方程(對(duì)求曲線(xiàn)的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線(xiàn)為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線(xiàn)2.7m處,隧道的高度低于貨車(chē)的高度,因此貨車(chē)不能駛?cè)脒@個(gè)隧道。
(二)深入探究(獲得新知)
問(wèn)題二:1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時(shí)又如何呢?
[學(xué)生活動(dòng)] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
i.直接應(yīng)用(內(nèi)化新知)
問(wèn)題三:1.寫(xiě)出下列各圓的方程(課本p77練習(xí)1)
(1)圓心在原點(diǎn),半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .
2.根據(jù)圓的方程寫(xiě)出圓心和半徑
(1) ; (2) .
ii.靈活應(yīng)用(提升能力)
問(wèn)題四:1.求以 為圓心,并且和直線(xiàn) 相切的圓的方程.
[教師引導(dǎo)]由問(wèn)題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線(xiàn)方程.
[學(xué)生活動(dòng)]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線(xiàn)的方程是: .
iii.實(shí)際應(yīng)用(回歸自然)
問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(zhǎng)度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實(shí)際問(wèn)題情境]
(四)反饋訓(xùn)練(形成方法)
問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.
3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線(xiàn)方程.
4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線(xiàn)方程.
【高中數(shù)學(xué)教案:圓的標(biāo)準(zhǔn)方程】相關(guān)文章:
高中數(shù)學(xué)說(shuō)課稿:《圓的標(biāo)準(zhǔn)方程》07-06
圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)與思考論文05-02
高二數(shù)學(xué)說(shuō)課稿《圓的標(biāo)準(zhǔn)方程》05-25
高中數(shù)學(xué)圓的方程教案12-03
高一數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿模板08-15
高中數(shù)學(xué)教案:圓05-06