初中數(shù)學(xué)《定義與命題》教案設(shè)計
教學(xué)目標
。ㄒ唬┙虒W(xué)知識點
1.命題的組成:條件和結(jié)論。 2。命題的真假 。 3。了解數(shù)學(xué)史。
。ǘ┠芰τ(xùn)練要求
1.能夠分清命題的題設(shè)和結(jié)論。會把命題改寫成“如果……,那么……”的形式;能 判斷命題的真假。
2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法。
3.通過對歐幾里得《原本》 的介紹,感受幾何的演繹體系對數(shù)學(xué)發(fā)展和人類文明的價值。
。ㄈ┣楦信c價值觀要求
1.通過舉反例的方法來 判斷一個命題是假命題,說明任何事物都是正反兩方面的對立統(tǒng)一體。
2.通過了解數(shù)學(xué)知識,拓展學(xué)生的視野,從而激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點
找出命題的條件(題設(shè))和結(jié)論。
教學(xué) 難點
找出命題的條件和結(jié)論。
教學(xué)過程
、.巧設(shè)現(xiàn)實情境,引入課題
上節(jié)課我們研究了命題,那么什么叫命題呢?
下面大家來 想一想:
觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同的結(jié)構(gòu)特征?
。1)如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。
(2)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。
(3)如果一個三角形是 等腰三角形,那 么這個三角形的'兩個底角相等。
。4)如果一個四邊形的對角線相等,那么這個四邊形是矩形。
(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形。
學(xué)生分組討論。
、龠@五個命題都是用“如果……,那么……”的 形 式敘述的。
、诿總命題都 是由已知得到結(jié)論。
、圻@五個命題的每個命題都有條件和結(jié)論。
、.講授新課
1 .命題的組成:每個命題都有條件和結(jié)論兩部分組成。
條件是已知的事項,結(jié)論是由已知事項推斷 出的事項。
2.舉例說明 命題如何寫成“如果……,那么……”的形式
、倜黠@的。
、诓幻黠@的。
做一做
1.下列各命題的條件是什么?結(jié)論是 什么?
。1)如果兩個角相等,那么它們是對頂角;
(2)如果a>b,b>c,那么a=c;
。3)兩角和其中一角的對邊對應(yīng) 相等的兩個三角形全等;
。4)菱形的四條邊都 相等;
。5)全等三角形的面積相等。
2.上述命題中哪 些是正確的?哪些是不正確的?你怎么知道它們是不正確的?
3.真命題和假命題
我們把正確的命題稱為真命題(tru e statement),不正確的命題稱為假命題(false statement)。
思考:如何證實一個命題是真命題呢?
4.我們這套教材有如下命題作為公理:
1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。
2.兩條平行線被第三條直線所 截,同位角相等。
3.兩邊及其夾角對應(yīng)相等的兩個三角形全等。
4.兩角及其夾邊對應(yīng)相等的兩個三角形全 等。
5.三邊對應(yīng)相等的兩個 三角形全等。
6.全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
、.課堂練習(xí)
、.課時小結(jié)
本節(jié)課我們主要研究了命題的組成及真假。知道任何一個命題都是由條件和結(jié)論兩部分組成。命題分為真命題和 假命題。
在辨別真假命題時。注意:假命題只需舉一個反例即可。而真命題除公理和性質(zhì)外,必須通過推理得證。
Ⅴ.課后作業(yè)
2.預(yù)習(xí)提綱
。1)平行線的判定方法的證明
。2)如何進行推理
【初中數(shù)學(xué)《定義與命題》教案設(shè)計】相關(guān)文章:
初中數(shù)學(xué)算術(shù)定義定理公式匯編01-15
教案設(shè)計 命題03-14
命題及其關(guān)系數(shù)學(xué)教案設(shè)計04-17
八年級數(shù)學(xué)定義與命題檢測題題目09-21
數(shù)學(xué)中分式的定義01-15