欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

數(shù)學(xué)教案-有理數(shù)的乘法

時間:2023-05-02 02:15:28 初中數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)教案-有理數(shù)的乘法

教學(xué)目標 

數(shù)學(xué)教案-有理數(shù)的乘法

1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;

2.能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;

3.三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;

4.通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;

5.本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。

教學(xué)建議

(一)重點、難點分析

本節(jié)的教學(xué)重點是能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習(xí)除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y(jié)合因數(shù)可以簡化運算過程。

本節(jié)的難點是對有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。

(二)知識結(jié)構(gòu)

 

(三)教法建議

1.有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。

2.兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”.絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法.

3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。

4.幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數(shù)為0.

5.小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。

6.如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。

教學(xué)設(shè)計示例

有理數(shù)的乘法(第一課時)

教學(xué)目標 

1.使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;

2.通過有理數(shù)的乘法運算,培養(yǎng)學(xué)生的運算能力;

3.通過教材給出的行程問題,認識數(shù)學(xué)來源于實踐并反作用于實踐。

教學(xué)重點和難點

重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;

難點:有理數(shù)乘法法則的理解.

課堂教學(xué)過程 設(shè)計

一、從學(xué)生原有認知結(jié)構(gòu)提出問題

1.計算(-2)+(-2)+(-2).

2.有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運算是在有理數(shù)的什么范圍中進行的?(非負數(shù))

3.有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)

4.根據(jù)有理數(shù)加減運算中引出的新問題主要是負數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負數(shù)問題,符號的確定)

二、師生共同研究有理數(shù)乘法法則

問題1  水庫的水位每小時上升3厘米,2小時上升了多少厘米?

解:3×2=6(厘米) ①

答:上升了6厘米.

問題2  水庫的水位平均每小時下降3厘米,2小時上升多少厘米?

解:-3×2=-6(厘米) ②

答:上升-6厘米(即下降6厘米).

引導(dǎo)學(xué)生比較①,②得出:

把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).

這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(-2)=?(-3)×(-2)=?(學(xué)生答)

把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.

把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.

此外,(-3)×0=0.

綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:

兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

任何數(shù)同0相乘,都得0.

繼而教師強調(diào)指出:

“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意“負負得正”和“異號得負”.

用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負數(shù),使乘法較小學(xué)當然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了.

因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值.

三、運用舉例,變式練習(xí)

例1  計算:

例2  某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.

(1)t小時后溫度是多少?

(2)當a,t分別是下列各數(shù)時的結(jié)果:

①a=3,t=2;②a=-3,t=2;

②a=3,t=-2;④a=-3,t=-2;

教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際.

課堂練習(xí)

1.口答:

(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;

(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);

2.口答:

(1)1×(-5); (2)(-1)×(-5); (3)+(-5);

(4)-(-5); (5)1×a; (6)(-1)×a.

這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調(diào)指出,a可以是正數(shù),也可以是負數(shù)或0;-a未必是負數(shù),也可以是正數(shù)或0.

3.當a,b是下列各數(shù)值時,填寫空格中計算的積與和:

4.填空:

(1)1×(-6)=______;(2)1+(-6)=_______;

(3)(-1)×6=________;(4)(-1)+6=______;

(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.

5.判斷下列方程的解是正數(shù)還是負數(shù)或0:

(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

四、小結(jié)

今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個負數(shù)相乘得正數(shù),簡單地說:“負負得正”.

五、作業(yè) 

1.計算:

(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).

2.計算:

3.填空(用“>”或“<”號連接):

(1)如果 a<0,b<0,那么 ab ________0;

(2)如果 a<0,b<0,那么ab _______0;

(3)如果a>0時,那么a ____________2a;

(4)如果a<0時,那么a __________2a.

探究活動

問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?

答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的.

道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.

數(shù)學(xué)教案-有理數(shù)的乘法

【數(shù)學(xué)教案-有理數(shù)的乘法】相關(guān)文章:

有理數(shù)的乘法數(shù)學(xué)教案(精選11篇)01-07

有理數(shù)的乘法教案11-09

有理數(shù)的乘法(1)教案04-25

初中數(shù)學(xué)有理數(shù)乘法教案01-03

有理數(shù)的乘法教學(xué)反思(通用10篇)09-22

數(shù)學(xué)教案:小數(shù)乘法02-20

數(shù)學(xué)教案:分數(shù)乘法02-17

數(shù)學(xué)教案:8的乘法口訣03-30

數(shù)學(xué)教案:乘法的初步認識02-04

小學(xué)乘法數(shù)學(xué)教案01-19