關于八年級數學教案集錦8篇
在教學工作者實際的教學活動中,就有可能用到教案,借助教案可以有效提升自己的教學能力。那么應當如何寫教案呢?下面是小編為大家收集的八年級數學教案8篇,歡迎閱讀與收藏。
八年級數學教案 篇1
一、創(chuàng)設情境
在學習與生活中,經常要研究一些數量關系,先看下面的問題.
問題1如圖是某地一天內的氣溫變化圖.
看圖回答:
(1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?
解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.
從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數量關系呢?
二、探究歸納
問題2銀行對各種不同的存款方式都規(guī)定了相應的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:
觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.
解隨著存期x的增長,相應的年利率y也隨著增長.
問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數值:
觀察上表回答:
(1)波長l和頻率f數值之間有什么關系?
(2)波長l越大,頻率f就________.
解(1)l與f的乘積是一個定值,即
lf=300000,
或者說.
(2)波長l越大,頻率f就 越小 .
問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.
利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問題中,我們研究了一些數量關系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數值.像這樣在某一變化過程中,可以取不同數值的量,叫做變量(variable).
上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值
八年級數學教案 篇2
教材分析
1本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式
1、以教材作為出發(fā)點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。
2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。
學情分析
1、在學習本課之前應具備的基本知識和技能:
、偻愴椀亩x。
②合并同類項法則
、鄱囗検匠艘远囗検椒▌t。
2、學習者對即將學習的內容已經具備的水平:
在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。
教學目標
(一)教學目標:
1、經歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。
2、會推導完全平方公式,并能運用公式進行簡單的計算。
(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理
數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規(guī)律,并能運用代數式、、不等式、函數等進行描述。
(四)解決問題:能結合具體情景發(fā)現(xiàn)并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。
(五)情感與態(tài)度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。
教學重點和難點
重點:能運用完全平方公式進行簡單的計算。
難點:會推導完全平方公式
教學過程
教學過程設計如下:
〈一〉、提出問題
[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學生回答]分組交流、討論
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
。1)原式的特點。
(2)結果的項數特點。
。3)三項系數的特點(特別是符號的特點)。
。4)三項與原多項式中兩個單項式的關系。
2、[學生回答]總結完全平方公式的語言描述:
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學生回答]完全平方公式的數學表達式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判斷:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、一現(xiàn)身手
、 (x+y)2 =______________;② (-y-x)2 =_______________;
、 (2x+3)2 =_____________;④ (3a-2)2 =_______________;
、 (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[學生小結]
你認為完全平方公式在應用過程中,需要注意那些問題?
(1)公式右邊共有3項。
(2)兩個平方項符號永遠為正。
(3)中間項的符號由等號左邊的兩項符號是否相同決定。
(4)中間項是等號左邊兩項乘積的2倍。
〈五〉、探險之旅
。1)(-3a+2b)2=________________________________
。2)(-7-2m) 2 =__________________________________
。3)(-0.5m+2n) 2=_______________________________
。4)(3/5a-1/2b) 2=________________________________
。5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
。7)(2xy2-3x2y) 2=_______________________________
。8)(2n3-3m3) 2=________________________________
板書設計
完全平方公式
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2
八年級數學教案 篇3
一、學生起點分析
學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?
反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中
可能要用到反證等思路,對現(xiàn)階段學生而言可能還具有一定困難,需要教師適時的引導。
二、學習任務分析
本節(jié)課是北師大版數學八年級(上)第一章《勾股定理》第2節(jié)。教學任務有:探索勾股定理的逆定理
并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:
● 知識與技能目標
1.理解勾股定理逆定理的具體內容及勾股數的概念;
2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標
1.經歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力;
2.經歷從實驗到驗證的過程,發(fā)展學生的數學歸納能力。
● 情感與態(tài)度目標
1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯(lián)系,激發(fā)學生學數學、用數學的興趣;
2.在探索過程中體驗成功的喜悅,樹立學習的自信心。
教學重點
理解勾股定理逆定理的具體內容。
三、教法學法
1.教學方法:實驗猜想歸納論證
本節(jié)課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗
但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學目標,我力求從以下三個方面對學生進行引導:
(1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;
(2)從學生活動出發(fā),通過以舊引新,順勢教學過程;
(3)利用探索,研究手段,通過思維深入,領悟教學過程。
2.課前準備
教具:教材、電腦、多媒體課件。
學具:教材、筆記本、課堂練習本、文具。
四、教學過程設計
本節(jié)課設計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?
2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設引入新課,激發(fā)學生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎。
第二環(huán)節(jié):合作探究
內容1:探究
下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:
1.這三組數都滿足 嗎?
2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。
意圖:
通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發(fā)現(xiàn)總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經過學生充分討論后,匯總各小組實驗結果發(fā)現(xiàn):①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。
從上面的分組實驗很容易得出如下結論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
內容2:說理
提問:有同學認為測量結果可能有誤差,不同意這個發(fā)現(xiàn)。你認為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?
意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
滿足 的三個正整數,稱為勾股數。
注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。
活動3:反思總結
提問:
1.同學們還能找出哪些勾股數呢?
2.今天的結論與前面學習勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?
4.通過今天同學們合作探究,你能體驗出一個數學結論的發(fā)現(xiàn)要經歷哪些過程呢?
意圖:進一步讓學生認識該定理與勾股定理之間的關系
第三環(huán)節(jié):小試牛刀
內容:
1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴大相同的倍數后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習,加強對勾股定理及勾股定理逆定理認識及應用
效果
每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節(jié):登高望遠
內容:
1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉彎后,是否沿正西方向航行?
解答:由題意畫出相應的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實際問題,進一步鞏固該定理。
效果:
學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。
第五環(huán)節(jié):鞏固提高
內容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。
效果:
學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。
第六環(huán)節(jié):交流小結
內容:
師生相互交流總結出:
1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;
2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發(fā)現(xiàn)總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。
意圖:
鼓勵學生結合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發(fā)展運用數學的信心和能力,初步形成積極參與數學活動的意識。
效果:
學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。
第七環(huán)節(jié):布置作業(yè)
課本習題1.4第1,2,4題。
五、教學反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習。
2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發(fā)現(xiàn)總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。
4.注重對學習新知理解應用偏困難的學生的進一步關注。
5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。
由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。
附:板書設計
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠
八年級數學教案 篇4
教學任務分析
教學目標
知識技能
探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.
數學思考
能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養(yǎng)學生的分析問題能力和計算能力.
解決問題
通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.
情感態(tài)度
在應用等腰梯形的性質的過程養(yǎng)成獨立思考的習慣, 在數學學習活動中獲得成功的體驗.
重點
等腰梯形的性質及其應用.
難點
解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.
教學流程安排
活動流程圖
活動的內容和目的
活動1想一想
活動2說一說
活動3畫一畫
活動4做—做
活動5練一練
活動6理一理
觀察梯形圖片,引入本節(jié)課的學習內容.
了解梯形定義、各部分名稱及分類.
通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的轉化關系.
探究得到等腰梯形的性質.
通過解決具體問題,尋找解決梯形問題的方法.
通過整理回顧,鞏固知識、提高能力、滲透思想.
教學過程設計
問題與情景
師生行為
設計意圖
[活動1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?
演示圖片,學生欣賞.
結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.
由現(xiàn)實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養(yǎng)學生的觀察、概括能力.
[活動2]
梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.
學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區(qū)別和聯(lián)系.
通過類比,培養(yǎng)學生歸納、總結的能力.
問題與情景
師生行為
設計意圖
一些基本概念
(1)(如圖):底、腰、高.
。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
。3)直角梯形:有一個角是直角的梯形叫做直角梯形.
學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發(fā)言后, 教師可以強調:①梯形與四邊形的關系;
、谏稀⑾碌椎母拍钍怯傻椎拈L短來定義的,而并不是指位置來說的.
熟悉圖形,明確概念,為探究圖形性質做準備.
[活動3]
畫一畫
在下列所給圖中的每個三角形中畫一條線段,
(1)怎樣畫才能得到一個梯形?
。2)在哪些三角形中,能夠得到一個等腰梯形?
在學生獨立探究的基礎上,學生分組交流.
教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.
本次活動教師應重點關注:
。1)學生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉化方法.
。2)學生能否將等腰三角形轉化為等腰梯形.
。3)學生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.
等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.
問題與情景
師生行為
設計意圖
[活動4]
做—做
探索等腰梯形的性質(引入用軸對稱解決問題的思想).
在一張方格紙上作一個等腰梯形,連接兩條對角線.
。1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的'線段和相等的角?學生畫圖并通過觀察猜想;
。2)這個等腰梯形的兩條對角線的長度有什么關系?
學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.
針對不同認識水平的學生,教師指導學生活動.
師生共同歸納:
、俚妊菪问禽S對稱圖形,上下底的中點連線是對稱軸.
②等腰梯形兩腰相等.
、鄣妊菪瓮坏咨系膬蓚角相等.
、艿妊菪蔚膬蓷l對角線相等.
教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現(xiàn),可以借此機會,給學生介紹這兩種輔助線的添加方法.
[活動5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長.
師生共同分析,尋找解決問題的方法和策略.
例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.
分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.
其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.
問題與情景
師生行為
設計意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.
[活動6]
1.小結
2.布置作業(yè)
。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.
(2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
。3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)
師生歸納總結:
解決梯形問題常用的方法:
。1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);
。2)“作高”:使兩腰在兩個直角三角形中(圖2);
(3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);
。4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);
。5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).
盡量多地讓學生參與發(fā)言是一個交流的過程.
梳理本節(jié)課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續(xù)探究的空間.
學生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.
八年級數學教案 篇5
一、教學目的
1.使學生進一步理解自變量的取值范圍和函數值的意義.
2.使學生會用描點法畫出簡單函數的圖象.
二、教學重點、難點
重點:1.理解與認識函數圖象的意義.
2.培養(yǎng)學生的看圖、識圖能力.
難點:在畫圖的三個步驟的列表中,如何恰當地選取自變量與函數的對應值問題.
三、教學過程
復習提問
1.函數有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結合函數y=x的圖象,說明什么是函數的圖象?
3.說出下列各點所在象限或坐標軸:
新課
1.畫函數圖象的方法是描點法.其步驟:
(1)列表.要注意適當選取自變量與函數的對應值.什么叫“適當”?——這就要求能選取表現(xiàn)函數圖象特征的幾個關鍵點.比如畫函數y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.
一般地,我們把自變量與函數的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數的對應值列出表來.
(2)描點.我們把表中給出的有序實數對,看作點的坐標,在直角坐標系中描出相應的點.
(3)用光滑曲線連線.根據函數解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.
一般地,根據函數解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數的曲線(或直線).
2.講解畫函數圖象的三個步驟和例.畫出函數y=x+0.5的圖象.
小結
本節(jié)課的重點是讓學生根據函數解析式畫函數圖象的三個步驟,自己動手畫圖.
練習
①選用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線)
、谘a充題:畫出函數y=5x-2的圖象.
作業(yè)
選用課本習題.
四、教學注意問題
1.注意滲透數形結合思想.通過研究函數的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數的解析式、列表、圖象三者結合起來,更有利于認識函數的本質特征.
2.注意充分調動學生自己動手畫圖的積極性.
3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養(yǎng)學生看圖、識圖的能力.
八年級數學教案 篇6
教學目標
知識與技能
用二元一次方程組解決有趣場景中的數字問 題和行程問題,歸納用方程(組)解決實際問題的一般步驟.
過程與方法
1.通過設置問題串,讓學生體會分析復雜問題的思考方法.
2.讓學生進一步經歷和體驗列方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界 的有效數學模型.
情感態(tài)度與價值觀
在學習過程中讓學生體驗把復雜問題化為簡單問題的策略,體驗成功感,同時培養(yǎng)學生克服困難的意志和勇氣, 樹立自信心,并鼓勵學生合作 交流,培養(yǎng)學生的團隊精神.
教學重點
1.初步體會列方程組解決實際問題的步驟.
2.學會用圖表 分析較復雜的數量關系問題。
教學難點
將實際問題轉化 成二元一次方程組的數學模型;會用圖表分析數 量關系。
教學準備:
教具:教材,課件,電腦(視頻播放器)
學具:教材,練習本
教學過程
第一環(huán)節(jié):復習提問(5分鐘,學生口答)
內容:填空:
(1)一個兩位數,個位數字是 ,十位數字是 ,則這個兩位數用代數式表示為 ;若交換個位和十位上的數字得到一個新的兩位數,用代數式表示為 .
(2)一個兩位數,個位上的數為 ,十位上的數為 ,如果在它們之間添上一個0,就得到一個三位數,這個三位數用代數式可以表示為 .
(3)有兩個兩位數 和 ,如果將 放在 的左邊,就得到一個四位數,那么這個四位數用代數式表示為 ;如果將 放在 的右邊,將得到一個新的四位數,那么這個四位數用代數式可表示為 .
第二環(huán)節(jié):情境引入(10分鐘,學生動腦思考,全班交流)
內容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況.你能 確定小明在12:00時看到的里程碑上的數嗎?
第三環(huán)節(jié):合作學習(10分鐘,小組討論,找等量關系,解決 問題)
內容:例1
兩個兩位數的和是68,在較大的兩位數的右邊接著寫較小的兩位數,得到一個四位數;在較大的兩位數的左邊寫上較小的兩位數,也得到一個四位數.已知前一個四位數比后一個四位數大2178,求這兩個兩位數.
學生先獨立思考例1,在此基礎上,教師根據學生思考情況組織交流與討論.
第四環(huán)節(jié):鞏固練習(10分鐘,學生嘗試獨立解決問題,全班交流)
內容:練習
1.一個兩位數,減去它的各位數字之和的3倍,結果是23;這個兩位數除以它的各位數字 之和,商是5,余數是1.這個兩位數是多少?
2.一個兩位數是另一個兩位數的3倍,如果把這個兩位數放在另一個兩位數的左 邊與放在右邊所得的數之和為8484.求這個兩位數.
第五環(huán)節(jié):課堂小結(5分鐘,教師引導學生總結一般步驟)
內容:
1.教師提問:本節(jié)課我們學習了那些內容,對這些內容你有什么體會和想法?請與同伴交流.
2.師生互相交流總結出列方程(組)解決實際問題的一般步驟.
第 六環(huán)節(jié):布置作業(yè)
內容:習題7.6
A組(優(yōu)等生) 2,3,4
B組(中等生)2、3
C組(后三分之一生)2
八年級數學教案 篇7
1、教材分析
(1)知識結構
(2)重點、難點分析
本節(jié)內容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.
本節(jié)內容的難點是定理及逆定理的關系. 垂直平分線定理和其逆定理,題設與結論正好相反. 學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
2、 教法建議
本節(jié)課教學模式主要采用“學生主體性學習”的教學模式. 提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納. 教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人. 具體說明如下:
(1)參與探索發(fā)現(xiàn),領略知識形成過程
學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關系?學生會很容易得出“相等”. 然后學生完成證明,找一名學生的證明過程,進行投影總結. 最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理. 這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.
(2)采用“類比”的學習方法,獲取逆定理
線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系.
(3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養(yǎng)學生發(fā)現(xiàn)問題、提出問題的創(chuàng)造性能力.
八年級數學教案 篇8
教學目標:
情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。
教學重點、難點
重點:等腰梯形性質的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
。ㄒ唬⿲
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|的探究
【探究性質一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質:等腰梯形的兩條對角線相等。
【探究性質三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質:同以底上的兩個內角相等,對角線相等
。ㄈ┵|疑反思、小結
讓學生回顧本課教學內容,并提出尚存問題;
學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
【關于八年級數學教案集錦8篇】相關文章:
關于小學數學教案模板集錦7篇12-08
小學數學教案(集錦15篇)09-04
初中數學教案(集錦15篇)03-31
關于小學數學教案10篇07-02
關于小學數學教案6篇06-22
關于小學數學教案7篇06-16
關于小學數學教案9篇04-09
關于小學數學教案八篇04-05
關于小學數學教案5篇03-18
關于小學數學教案六篇03-08