關于八年級數(shù)學教案模板合集五篇
作為一位杰出的教職工,時常要開展教案準備工作,教案是教材及大綱與課堂教學的紐帶和橋梁。那么你有了解過教案嗎?以下是小編為大家收集的八年級數(shù)學教案5篇,希望能夠幫助到大家。
八年級數(shù)學教案 篇1
第一步:情景創(chuàng)設
乒乓球的標準直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認為哪廠生產(chǎn)的乒乓球的直徑與標準的誤差更小呢?
。1)請你算一算它們的平均數(shù)和極差。
。2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標準?
今天我們一起來探索這個問題。
探索活動
通過計算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個極值之間的大小情況,而對其他數(shù)據(jù)的波動情況不敏感。讓我們一起來做下列的數(shù)學活動
算一算
把所有差相加,把所有差取絕對值相加,把這些差的平方相加。
想一想
你認為哪種方法更能明顯反映數(shù)據(jù)的波動情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來衡量一批數(shù)據(jù)的波動大小
在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應用更廣泛衡量一組數(shù)據(jù)的波動大小
(3)方差主要應用在平均數(shù)相等或接近時
。4)方差大波動大,方差小波動小,一般選波動小的
方差的簡便公式:
推導:以3個數(shù)為例
。ǘ藴什睿
方差的算術平方根,即④
并把它叫做這組數(shù)據(jù)的標準差.它也是一個用來衡量一組數(shù)據(jù)的波動大小的重要的量.
注意:波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
八年級數(shù)學教案 篇2
學習目標
1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關系并能找出變化規(guī)律。
2、由坐標的變化探索新舊圖形之間的變化。
重點
1、 作某一圖形關于對稱軸的對稱圖形,并能寫出所得圖形相應各點的坐標。
2、 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。
難點
體會極坐標和直角坐標思想,并能解決一些簡單的問題
學習過程(導入、探究新知、即時練習、小結、達標檢測、作業(yè))
第一課時
學習過程:
一、舊知回顧:
1、平面直角坐標系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標系。
2、坐標平面內(nèi)點的坐標的表示方法____________。
3、各象限點的坐標的特征:
二、新知檢索:
1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形
三、典例分析
例1、
(1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?
例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?
四、題組訓練
1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。
(1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?
(2)縱、橫分別加3呢?
(3)縱、橫分別變成原來的2倍呢?
歸納:圖形坐標變化規(guī)律
1、 平移規(guī)律:2、圖形伸長與壓縮:
第二課時
一、舊知回顧:
1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。
中心對稱圖形定義:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形
二、新知檢索:
1、如圖,左邊的魚與右邊的魚關于y軸對稱。
1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?
2、各個對應頂點的坐標有怎樣的關系?
3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關于y軸對稱,那么左邊的魚各個頂點的坐標將發(fā)生怎樣的變化?
三、典例分析,如圖所示,
1、右圖的魚是通過什么樣的變換得到 左圖的魚的。
2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關系。
3、如果將右邊的魚的縱、橫坐標都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關系
四、題組練習
1、將坐標作如下變化時,圖形將怎樣變化?
、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。
3、 如圖,作字母M關于y軸的軸對稱圖形,并寫出所得圖形相應各端點的坐標。
4、 描出下圖中楓葉圖案關于x軸的軸對稱圖形的簡圖。
學習筆記
八年級數(shù)學教案 篇3
一、學習目標及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念的產(chǎn)生和形成的過程。
3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。
難點:理解方差公式
二、自主學習:
(一)知識我先懂:
方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用
來表示。
給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。
(二)自主檢測小練習:
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )
(2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )
歸納: 方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?、
測試次數(shù) 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強 10 13 16 14 12
給力提示:先求平均數(shù),在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?
四、課堂小結
方差公式:
給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數(shù),是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題
七、學習小札記:
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學教案 篇4
一、教學目標
1.理解一個數(shù)平方根和算術平方根的意義;
2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術平方根;
3.通過本節(jié)的訓練,提高學生的.邏輯思維能力;
4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關系,激發(fā)學生探索數(shù)學奧秘的興趣。
二、教學重點和難點
教學重點:平方根和算術平方根的概念及求法。
教學難點:平方根與算術平方根聯(lián)系與區(qū)別。
三、教學方法
講練結合
四、教學手段
幻燈片
五、教學過程
。ㄒ唬┨釂
1、已知一正方形面積為50平方米,那么它的邊長應為多少?
2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應為多少?
這些問題的共同特點是:已知乘方的結果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學習的。下面作一個小練習:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學生在完成此練習時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學時應注意糾正。
由練習引出平方根的概念。
。ǘ┢椒礁拍
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。
用數(shù)學語言表達即為:若x2=a,則x叫做a的平方根。
由練習知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學生思考后,得到結論此題無答案。反問學生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結論,負數(shù)是沒有平方根的。下面總結一下平方根的性質(zhì)(可由學生總結,教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2.0有一個平方根,它是0本身。
3.負數(shù)沒有平方根。
。ㄋ模╅_平方
求一個數(shù)a的平方根的運算,叫做開平方的運算。
由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結果是兩個。
。ㄎ澹┢椒礁谋硎痉椒
一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。
練習:1.用正確的符號表示下列各數(shù)的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
、0。2的平方根是
、3的平方根是
、 的平方根是
由學生說出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結:讓學生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。
六、總結
本節(jié)課主要學習了平方根的概念、性質(zhì),以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。
七、作業(yè)
教材P。127練習1、2、3、4。
八、板書設計
平方根
。ㄒ唬└拍 (四)表示方法 例1
(二)性質(zhì)
。ㄈ╅_平方
探究活動
求平方根近似值的一種方法
求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級數(shù)學教案 篇5
教材分析
本章屬于“數(shù)與代數(shù)”領域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學學習中具有重要的意義。本章內(nèi)容建立在已經(jīng)學習了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎上,而本節(jié)課的知識是學習本章的基礎,為后續(xù)章節(jié)的學習作鋪墊,因此,學得好壞直接關乎到后續(xù)章節(jié)的學習效果。
學情分析
本節(jié)課知識是學習整章的基礎,因此,教學的好壞直接影響了后續(xù)章節(jié)的學習。學生在學習本章前,已經(jīng)掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關概念,并且本節(jié)課的知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數(shù)冪的乘法的運算性質(zhì)的過程是一個由特殊到一般的認識過程,并且注意導出這一性質(zhì)的每一步的根據(jù)。
從學生做練習和作業(yè)來看,大部分學生都已經(jīng)掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。
教學目標
1、知識與技能:
掌握同底數(shù)冪乘法的運算性質(zhì),能熟練運用性質(zhì)進行同底數(shù)冪乘法運算。
2、過程與方法:
(1)通過同底數(shù)冪乘法性質(zhì)的推導過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;
。2)通過性質(zhì)運用幫助學生理解字母表達式所代表的數(shù)量關系,進一步積累選擇適當?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經(jīng)驗。
3、情感態(tài)度與價值觀:
。1)通過引例問題情境的創(chuàng)設,誘發(fā)學生的求知欲,進一步認識數(shù)學與生活的密切聯(lián)系;
。2)通過性質(zhì)的推導體會“特殊。
【關于八年級數(shù)學教案模板合集五篇】相關文章:
小學數(shù)學教案模板合集8篇05-30
小學數(shù)學教案模板合集八篇03-17
小學數(shù)學教案模板合集10篇03-15
小學數(shù)學教案模板合集9篇01-27
小學數(shù)學教案模板合集5篇12-23
小學數(shù)學教案模板合集7篇07-20
關于小學數(shù)學教案模板10篇04-27
關于小學數(shù)學教案模板六篇02-11
關于小學數(shù)學教案模板6篇12-31
關于小學數(shù)學教案模板5篇12-25