《三角形內(nèi)角和》數(shù)學(xué)教案(精選14篇)
作為一名默默奉獻(xiàn)的教育工作者,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。快來參考教案是怎么寫的吧!下面是小編精心整理的《三角形內(nèi)角和》數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
《三角形內(nèi)角和》數(shù)學(xué)教案 篇1
教學(xué)內(nèi)容
義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書《數(shù)學(xué)》(人教版)四年級(jí)下冊第85頁。
設(shè)計(jì)思路
遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一。學(xué)生對三角尺上每個(gè)角的度數(shù)比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個(gè)內(nèi)角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個(gè)內(nèi)角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗(yàn)證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動(dòng)潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。最后讓學(xué)生運(yùn)用結(jié)論解決實(shí)際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個(gè)層次,逐步加深。練習(xí)形式具有趣味性,激發(fā)了學(xué)生主動(dòng)解題的積極性。第一個(gè)練習(xí)從知識(shí)的直接應(yīng)用到間接應(yīng)用,數(shù)學(xué)信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識(shí)應(yīng)該達(dá)到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個(gè)練習(xí)設(shè)計(jì)了開放性的練習(xí),在小組內(nèi)完成。由一個(gè)同學(xué)出題,其它三個(gè)同學(xué)回答。先給出三角形兩個(gè)內(nèi)角的度數(shù),說出另外一個(gè)內(nèi)角。有唯一的答案。訓(xùn)練多次后,只給出三角形一個(gè)內(nèi)角,說出其它兩個(gè)內(nèi)角,答案不唯一,可以得出無數(shù)個(gè)答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個(gè)教學(xué)設(shè)計(jì)中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實(shí)驗(yàn)、去發(fā)現(xiàn)新知識(shí)的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。
教學(xué)目標(biāo)
1.讓學(xué)生親自動(dòng)手,通過量、剪、拼等活動(dòng)發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會(huì)應(yīng)用這一知識(shí)解決生活中簡單的實(shí)際問題。
2.讓學(xué)生在動(dòng)手獲取知識(shí)的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、探索精神和實(shí)踐能力。并通過動(dòng)手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動(dòng),向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
3.使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
教材分析
三角形的內(nèi)角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。學(xué)生在掌握知識(shí)方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識(shí)的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
教學(xué)重點(diǎn)
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識(shí)的形成、發(fā)展和應(yīng)用的全過程。
教學(xué)準(zhǔn)備
多媒體課件、學(xué)具。
教學(xué)過程
一、激趣引入
。ㄒ唬┱J(rèn)識(shí)三角形內(nèi)角
師:我們已經(jīng)認(rèn)識(shí)了什么是三角形,誰能說出三角形有什么特點(diǎn)?
生1:三角形是由三條線段圍成的圖形。
生2:三角形有三個(gè)角,……
師:請看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內(nèi)形成了三個(gè)角,(課件分別閃爍三個(gè)角及的弧線),我們把三角形里面的這三個(gè)角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)
。ǘ┰O(shè)疑,激發(fā)學(xué)生探究新知的心理
師:請同學(xué)們幫老師畫一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的心理)
生:能。
師:請聽要求,畫一個(gè)有兩個(gè)內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個(gè)直角。
生3:只能畫長方形。
師(課件演示):是不是畫成這個(gè)樣子了?哦,只能畫兩個(gè)直角。
師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來研究吧!
(揭示矛盾,巧妙引入新知的.探究)
二、動(dòng)手操作,探究新知
。ㄒ唬┭芯刻厥馊切蔚膬(nèi)角和
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個(gè)角的度數(shù)。(課件閃動(dòng)其中的一塊三角板)
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)
師:也就是這個(gè)三角形各角的度數(shù)。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個(gè)內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。
師:(課件演示另一塊三角板的各角的度數(shù)。)這個(gè)呢?它的內(nèi)角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個(gè)三角形內(nèi)角和的計(jì)算中,你發(fā)現(xiàn)什么?
生1:這兩個(gè)三角形的內(nèi)角和都是180°。
生2:這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形內(nèi)角和
1.猜一猜。
師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……
2.操作、驗(yàn)證一般三角形內(nèi)角和是180°。
。1)小組合作、進(jìn)行探究。
師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個(gè)內(nèi)角的度數(shù),再加起來。
師:哦,也就是測量計(jì)算,是嗎?那就請四人小組共同研究吧!
師:每個(gè)小組都有不同類型的三角形。每種類型的三角形都需要驗(yàn)證,先討論一下,怎樣才能很快完成這個(gè)任務(wù)。(課前每個(gè)小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導(dǎo)學(xué)生選擇解決問題的策略,進(jìn)行合理分工,提高效率。)
。2)小組匯報(bào)結(jié)果。
師:請各小組匯報(bào)探究結(jié)果。
生1:180°。
生2:175°。
生3:182°。
……
(三)繼續(xù)探究
師:沒有得到統(tǒng)一的結(jié)果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個(gè)內(nèi)角放在一起,可以拼成一個(gè)平角。
《三角形內(nèi)角和》數(shù)學(xué)教案 篇2
學(xué)習(xí)目標(biāo):
(1) 知識(shí)與技能 :
掌握三角形內(nèi)角和定理的證明過程,并能根據(jù)這個(gè)定理解決實(shí)際問題。
(2) 過程與方法 :
通過學(xué)生猜想動(dòng)手實(shí)驗(yàn),互相交流,師生合作等活動(dòng)探索三角形內(nèi)角和為180度,發(fā)展學(xué)生的推理能力和語言表達(dá)能力。對比過去撕紙等探索過程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化的理性作用。逐漸由實(shí)驗(yàn)過渡到論證。
通過一題多解、一題多變等,初步體會(huì)思維的多向性,引導(dǎo)學(xué)生的個(gè)性化發(fā)展。
(3)情感態(tài)度與價(jià)值觀:
通過猜想、推理等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生主動(dòng)探索,敢于實(shí)驗(yàn),勇于發(fā)現(xiàn),合作交流。
一.自主預(yù)習(xí)
二.回顧課本
1、三角形的內(nèi)角和是多少度?你是怎樣知道的?
2、那么如何證明此命題是真命題呢?你能用學(xué)過的知識(shí)說一說這一結(jié)論的證明思路嗎?你能用比較簡潔的語言寫出這一證明過程嗎?與同伴進(jìn)行交流。
3、回憶證明一個(gè)命題的.步驟
、佼媹D
、诜治雒}的題設(shè)和結(jié)論,寫出已知求證,把文字語言轉(zhuǎn)化為幾何語言。
、鄯治觥⑻骄孔C明方法。
4、要證三角形三個(gè)內(nèi)角和是180,觀察圖形,三個(gè)角間沒什么關(guān)系,能不能象前面那樣,把這三個(gè)角拼在一起呢?拼成什么樣的角呢?
①平角,②兩平行線間的同旁內(nèi)角。
5、要把三角形三個(gè)內(nèi)角轉(zhuǎn)化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫成虛線,添輔助線是解決問題的重要思想方法。如何把三個(gè)角轉(zhuǎn)化為平角或兩平行線間的同旁內(nèi)角呢?
① 如圖1,延長BC得到一平角BCD,然后以CA為一邊,在△ABC的外部畫A。
、 如圖1,延長BC,過C作CE∥AB
、 如圖2,過A作DE∥AB
、 如圖3,在BC邊上任取一點(diǎn)P,作PR∥AB,PQ∥AC。
三、鞏固練習(xí)
四、學(xué)習(xí)小結(jié):
(回顧一下這一節(jié)所學(xué)的,看看你學(xué)會(huì)了嗎?)
五、達(dá)標(biāo)檢測:
略
六、布置作業(yè)
《三角形內(nèi)角和》數(shù)學(xué)教案 篇3
教學(xué)目標(biāo):
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會(huì)按角的大小對三角形進(jìn)行分類;
3.通過對三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)
5. 通過對定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學(xué)重點(diǎn):
三角形內(nèi)角和定理及其推論。
教學(xué)難點(diǎn):
三角形內(nèi)角和定理的證明
教學(xué)用具:
直尺、微機(jī)
教學(xué)方法:
互動(dòng)式,談話法
教學(xué)過程:
1、創(chuàng)設(shè)情境,自然引入
把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。
問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?
問題2 你能用幾何推理來論證得到的關(guān)系嗎?
對于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書課題)
新課引入的`好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問質(zhì)疑,探究嘗試
(1)求證:三角形三個(gè)內(nèi)角的和等于
讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來,再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫顯示具體情景。然后,圍繞問題設(shè)計(jì)以下幾個(gè)問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)
什么角?問題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?
(把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)
問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對于問題3學(xué)生經(jīng)過思考會(huì)畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個(gè)內(nèi)角之和為定值
,那么對三角形的其它角還有哪些特殊的關(guān)系呢?問題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?
問題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?
問題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?
其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。
3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論
引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程
《三角形內(nèi)角和》數(shù)學(xué)教案 篇4
教學(xué)目標(biāo)
通過猜想、驗(yàn)證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的過程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計(jì)算多邊形內(nèi)角和的公式。
教學(xué)重難點(diǎn)
三角形的內(nèi)角和
課前準(zhǔn)備
電腦課件、學(xué)具卡片
教學(xué)活動(dòng)
一、計(jì)算三角尺三個(gè)內(nèi)角的和。
出示三角尺中的一個(gè),提問:誰來說說三角尺上的三個(gè)角分別是多少度?
引導(dǎo)學(xué)生說出90度、60度、30度。
出示另一個(gè)三角尺,引導(dǎo)學(xué)生分別說出三個(gè)角的度數(shù):90度、45度、45度。
提問:請同學(xué)們?nèi)芜x一個(gè)三角尺,算出他們?nèi)齻(gè)角一共多少度?
學(xué)生計(jì)算后指名回答。
師:三角尺三個(gè)角的和是180度。
二、自主探索,解決問題
提問:是不是任一個(gè)三角形三個(gè)角的和都是180度呢?請同學(xué)們在自備本上
任畫一個(gè)三角形,量出它們?nèi)齻(gè)角分別是多少度,再求出它們的和,然后小組內(nèi)交流。
學(xué)生小組活動(dòng),教師了解學(xué)生情況,個(gè)別同學(xué)加以輔導(dǎo)。
全班交流:讓學(xué)生分別說出三個(gè)角的度數(shù)以及它們的和。
提問:你發(fā)現(xiàn)了什么?
:任何一個(gè)三角形三個(gè)角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。
三、試一試
要求學(xué)生先計(jì)算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計(jì)算的方法。
教師說明:即使結(jié)果不完全一樣,是因?yàn)闇y量的結(jié)果存在誤差,我們還是以
計(jì)算的結(jié)果為準(zhǔn)。
四、鞏固提高
完成想想做做的題目。
第1題
學(xué)生獨(dú)立計(jì)算,交流算法。要求學(xué)生用量角器量出結(jié)果,和計(jì)算的.結(jié)果想比較。
第2題
指導(dǎo)學(xué)生看圖,弄清拼成的三角形的三個(gè)內(nèi)角指的是哪三個(gè)角。計(jì)算三角形三個(gè)角的內(nèi)角和,幫助學(xué)生進(jìn)一步理解:三角形三個(gè)內(nèi)角的和是180度。
第3題
通過操作、計(jì)算,使學(xué)生認(rèn)識(shí)到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會(huì)變化的。
第4、5、6
引導(dǎo)學(xué)生運(yùn)用三角形的分類及三角形內(nèi)角和的有關(guān)知識(shí)解決有關(guān)問題,重點(diǎn)培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)解決問題的能力。
《三角形內(nèi)角和》數(shù)學(xué)教案 篇5
尊敬的各位評(píng)委老師:
大家好!今天我很高興也很榮幸能有這個(gè)機(jī)會(huì)與大家共同交流,在深入鉆研教材,充分了解學(xué)生的基礎(chǔ)上,我準(zhǔn)備從以下幾個(gè)方面進(jìn)行說課:
一、教材分析
“三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì),它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。
二、教學(xué)目標(biāo)
1、知識(shí)與技能:明確三角形的內(nèi)角的概念,使學(xué)生自主探究發(fā)現(xiàn)三角形內(nèi)角和等于180°,并運(yùn)用這一規(guī)律解決問題。
2、過程和方法:通過學(xué)生猜、量、拼、折、觀察等活動(dòng),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。
3、情感與態(tài)度:使學(xué)生感受數(shù)學(xué)圖形之美及轉(zhuǎn)化思想,體驗(yàn)數(shù)學(xué)就在我們身邊。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):動(dòng)手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進(jìn)行簡單的運(yùn)用。
教學(xué)難點(diǎn):采用多種途徑驗(yàn)證三角形的內(nèi)角和是180°。
四、學(xué)情分析
通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識(shí),會(huì)量角,部分學(xué)生已經(jīng)知道三角形內(nèi)角和是180°,但不知道怎樣得出這個(gè)結(jié)論。
五、教學(xué)法分析
本節(jié)課采用自主探索、合作交流的教學(xué)方法,學(xué)生自主參與知識(shí)的構(gòu)建。領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用。
六、課前準(zhǔn)備
1、教師準(zhǔn)備:多媒體課件、三角形教具。
2、學(xué)生準(zhǔn)備:銳、直、鈍角三角形各兩個(gè),量角器、剪刀。
七、教學(xué)過程
。ㄒ唬(chuàng)設(shè)情境,激趣導(dǎo)入
導(dǎo)入:“同學(xué)們,有三位老朋友已經(jīng)恭候我們多時(shí)了。“(出示三角形動(dòng)畫課件),讓學(xué)生依次說出各是什么三角形。
課件分別閃爍三角形三個(gè)內(nèi)角,并介紹:“這三個(gè)角叫做三角形的內(nèi)角,把三個(gè)角的'度數(shù)加起來,就是三角形的內(nèi)角和。請學(xué)生畫一個(gè)三角形,要求:有兩個(gè)直角。為什么不能畫,問題在哪呢?這節(jié)課我們就一起來探究三角形的內(nèi)角和。板書課題。
。ǘ、自主探究、合作交流
1、探索特殊三角形內(nèi)角和
拿出自己的一副三角板,同桌之間互相說一說各個(gè)角的度數(shù)。
三角形內(nèi)角和是多少度呢?指名匯報(bào)。90°+30°+60°=180°
90°+45°+45°=180°
從剛才兩個(gè)三角形內(nèi)角和的計(jì)算中,你發(fā)現(xiàn)了什么?
2、探索一般三角形的內(nèi)角和
一般三角形的內(nèi)角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進(jìn)行探究,看看哪個(gè)組的方法多而且富有新意。
3、匯報(bào)交流
請小組代表匯報(bào)方法。
1)量:你測量的三個(gè)內(nèi)角分別是多少度?和呢?(有不同意見)
沒有統(tǒng)一的結(jié)果,有沒有其他方法?
2)剪―拼:把三角形的三個(gè)內(nèi)角剪下來拼在一起,成為一個(gè)平角,利用平角是180°這一特點(diǎn),得出結(jié)論。(學(xué)生嘗試驗(yàn)證)
3)折拼:學(xué)生邊演示邊匯報(bào)。把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角。所以得出三角形的內(nèi)角和是180°。(學(xué)生嘗試驗(yàn)證)
4)教師課件驗(yàn)證結(jié)果。
請看屏幕,老師也來驗(yàn)證一下,是不是和你們的結(jié)果一樣?播放課件。我們可以得到一個(gè)怎樣的結(jié)論?
學(xué)生回答后教師板書:三角形的內(nèi)角和是180°
為什么有的小組用測量的方法不能得到180°?(誤差)
4、驗(yàn)證深化
質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會(huì)是一樣嗎?(一樣)
誰能說一說不能畫出有兩個(gè)直角的三角形的原因?
。ㄈ(yīng)用規(guī)律,解決問題:
揭示規(guī)律后,學(xué)生要掌握知識(shí),就要通過解答實(shí)際問題。
1、為了讓學(xué)生積極參與,我設(shè)計(jì)了闖關(guān)的活動(dòng)來激勵(lì)學(xué)生的興趣。闖關(guān)成功會(huì)獲得小獎(jiǎng)?wù)隆?/p>
第一關(guān):基礎(chǔ)練習(xí),要求學(xué)生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個(gè)角,求第三個(gè)角(課件出示)
第二關(guān),提高練習(xí),
、僖阎妊切蔚牡捉,求頂角。②求等邊三角形每個(gè)角的度數(shù)是多少。直角三角形已知一個(gè)銳角,求另一個(gè)。
讓學(xué)生靈活應(yīng)用隱含條件來解決問題,進(jìn)一步提高能力。
2、小組合作練習(xí),完成相應(yīng)做一做。
(四)、課堂總結(jié),效果檢測。
一節(jié)成功的好課要有一個(gè)好的開頭,更要有一個(gè)完美的結(jié)尾,數(shù)學(xué)是使人變聰明的學(xué)科,通過這節(jié)課的學(xué)習(xí),你收獲了什么?學(xué)生們暢所欲言。接下來老師要檢查大家的學(xué)習(xí)效果,學(xué)生完成答題卡,組長評(píng)判,集體匯報(bào)。
(五)作業(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現(xiàn)。
八、板書設(shè)計(jì)
通過這樣的設(shè)計(jì),使學(xué)生不僅學(xué)到科學(xué)的探究方法,而且體驗(yàn)到探索的樂趣,使學(xué)生在自主中學(xué)習(xí),在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長。以上便是我對《三角形的內(nèi)角和》這一堂課的說課,謝謝大家!
《三角形內(nèi)角和》數(shù)學(xué)教案 篇6
【設(shè)計(jì)理念】
新課標(biāo)重視讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成過程,要求教師創(chuàng)設(shè)有效的問題情境激發(fā)學(xué)生的參與欲望,提供足夠的時(shí)間和空間讓學(xué)生經(jīng)歷觀察、猜測、驗(yàn)證、交流反思等過程,使學(xué)生在動(dòng)手操作、合作交流等活動(dòng)中親身經(jīng)歷知識(shí)的形成過程。這樣,學(xué)生不僅可以掌握知識(shí),而且可以積累探究數(shù)學(xué)問題的活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。
【教材內(nèi)容】
新人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書四年級(jí)下冊數(shù)學(xué)第67頁例6、“做一做”及練習(xí)十六的第1、2、3題。
【教材分析】
三角形的內(nèi)角和是三角形的一個(gè)重要特征。本課是安排在三角形的概念及分類之后教學(xué)的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。教材很重視知識(shí)的探索與發(fā)現(xiàn),安排兩次實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間和時(shí)間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、拼等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、交流、推理歸納出三角形的內(nèi)角和是180°。
【學(xué)情分析】
1、在學(xué)習(xí)本課時(shí),學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識(shí)基礎(chǔ):知道直角和平角的度數(shù),會(huì)用量角器度量角的度數(shù);認(rèn)識(shí)長方形、正方形,知道他們的四個(gè)角都是直角;認(rèn)識(shí)了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。
。病⒁呀(jīng)有一部分學(xué)生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。
【教學(xué)目標(biāo)】
1通過“量、剪、拼”等活動(dòng)發(fā)現(xiàn)、驗(yàn)證三角形的內(nèi)角和是180°,并能運(yùn)用這個(gè)知識(shí)解決一些簡單的問題。
2.在觀察、猜想、操作、合作、分析交流等具體活動(dòng)中,提高動(dòng)手操作能力,積累基本的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。
3.在參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過程中,獲得成功的體驗(yàn),感受數(shù)學(xué)探究的嚴(yán)謹(jǐn)與樂趣。
【教學(xué)重點(diǎn)】
探索發(fā)現(xiàn)、驗(yàn)證“三角形內(nèi)角和是180°”,并運(yùn)用這個(gè)知識(shí)解決實(shí)際問題。
【教學(xué)難點(diǎn)】
驗(yàn)證“三角形的內(nèi)角和是180°”。
【教(學(xué))具準(zhǔn)備】
多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個(gè)各類三角形(也包括等邊、等腰)、長方形、正方形若干個(gè);每人一個(gè)量角器;一把剪刀;每人一副三角尺。
【教學(xué)步驟】
一、復(fù)習(xí)舊知 引出課題
1、你已經(jīng)知道有關(guān)三角形的哪些知識(shí)?
2、出示課題:三角形的內(nèi)角和
【設(shè)計(jì)意圖:也自然導(dǎo)入新課。】
二、提出問題 引發(fā)猜想
1、提出問題:看到這個(gè)課題,你有什么問題想問的?
預(yù)設(shè):(1)三角形的內(nèi)角指的是哪些角? (2)三角形的內(nèi)角和是什么意思?
(3)三角形的.內(nèi)角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?
【設(shè)計(jì)意圖:提出一個(gè)問題比解決一個(gè)問題更重要。課始在復(fù)習(xí)三角形已學(xué)知識(shí)后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習(xí)自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的問題意識(shí)。由于學(xué)生在平時(shí)使用三角板時(shí)已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識(shí)經(jīng)驗(yàn),并體會(huì)到猜想要合理且有根據(jù),同時(shí)也為推理驗(yàn)證的引出作必要的鋪墊!
三、操作驗(yàn)證 形成結(jié)論
1、交流驗(yàn)證方法:
。1)用什么方法證明三角形的內(nèi)角和是180度呢?
預(yù)設(shè): ①量算法 ②剪拼法 ③折拼法等
(2)三角形的個(gè)數(shù)有無數(shù)個(gè),驗(yàn)證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會(huì)做到省時(shí)又高效?
2、動(dòng)手驗(yàn)證
3、全班匯報(bào)交流
4、小結(jié):剛才通過大家的動(dòng)手操作驗(yàn)證了三角形的內(nèi)角和是180 °度。但動(dòng)手操作會(huì)存在一定的誤差,我們的結(jié)論也可能存在偏差。
5、方法拓展
推理驗(yàn)證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。
6、形成結(jié)論:任意三角形的內(nèi)角和是180 °。
【設(shè)計(jì)意圖:
《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。”猜測后先獨(dú)立思考驗(yàn)證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動(dòng)時(shí)間和空間,讓學(xué)生動(dòng)手操作,使學(xué)生在量、剪、拼、折等一系列操作活動(dòng)中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個(gè)結(jié)論。在探索活動(dòng)前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時(shí)高效這兩個(gè)問題,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動(dòng)中積累基本的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),為后續(xù)的學(xué)習(xí)提供了經(jīng)驗(yàn)支撐。】
四、應(yīng)用結(jié)論 解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風(fēng)箏的頂角是多少度?
3、辨析訓(xùn)練,完善結(jié)論。
五、課堂總結(jié),歸納研究方法
今天這節(jié)課你學(xué)到了哪些知識(shí)?你是怎樣得到這些知識(shí)的?
六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。
七、板書設(shè)計(jì):
三角形的內(nèi)角和
猜測: 三角形的內(nèi)角和是180°?
驗(yàn)證: 量 拼
結(jié)論: 任意三角形的內(nèi)角和是180°
《三角形內(nèi)角和》數(shù)學(xué)教案 篇7
教學(xué)目標(biāo)
、盘剿鞑l(fā)現(xiàn)三角形的內(nèi)角和是180°,能利用這個(gè)知識(shí)解決實(shí)際問題。
、茖W(xué)生在經(jīng)歷觀察、猜測、驗(yàn)證的過程中,提升自身動(dòng)手動(dòng)腦及推理、歸納總結(jié)的能力。
、窃趨⑴c學(xué)習(xí)的過程中,感受數(shù)學(xué)獨(dú)特的魅力,獲得成功體驗(yàn),并產(chǎn)生學(xué)習(xí)數(shù)學(xué)的積極情感。
教學(xué)重點(diǎn):檢驗(yàn)三角形的內(nèi)角和是180°。
教學(xué)難點(diǎn):引導(dǎo)學(xué)生通過實(shí)驗(yàn)探究得出三角形的內(nèi)角和是180度。
教學(xué)環(huán)節(jié):問題情境與
教師活動(dòng):學(xué)生活動(dòng)媒體應(yīng)用設(shè)計(jì)意圖
目標(biāo)達(dá)成
導(dǎo)入新課
一、復(fù)習(xí)舊知,導(dǎo)入新課。
1、復(fù)習(xí)三角形分類的知識(shí)。
師出示三角形,生快速說出它的名稱。
2、什么是三角形的內(nèi)角?
我們通常所說的角就是三角形的內(nèi)角。為了便于稱呼,我們習(xí)慣用∠A、∠B、∠c來表示。
什么是三角形的內(nèi)角和?
三角形“三個(gè)內(nèi)角的度數(shù)之和”就是三角形的內(nèi)角和。用一個(gè)含有∠A、∠B、∠c的式子來表示應(yīng)該如何寫?∠A+∠B+∠c。
3、今天這節(jié)課啊我們就一起來研究三角形的內(nèi)角和。(揭題:三角形的內(nèi)角和)
由三角形的內(nèi)角引出三角形的內(nèi)角和,“∠A+∠B+∠c”的表示形式形象的體現(xiàn)出三內(nèi)角求和的關(guān)系
二、動(dòng)手操作,探究新知
1、出示三角板,猜一猜。
師:這個(gè)三角形的內(nèi)角和是多少度?熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個(gè)角的度數(shù)
把三角形三個(gè)內(nèi)角的度數(shù)合起來就叫三角形的`內(nèi)角和。是不是所有的三角形的內(nèi)角和都是180°呢?你能肯定嗎?
我們得想個(gè)辦法驗(yàn)證三角形的內(nèi)角和是多少?可以用什么方法驗(yàn)證呢?
3.學(xué)生測量
4.匯報(bào)的測量結(jié)果
除了我們這節(jié)課大家想到的方法,還有很多方法也能驗(yàn)證三角形的內(nèi)角和是180°到初中我們還要更嚴(yán)密的方法證明三角形的內(nèi)角和是180°
5、鞏固知識(shí)。
一個(gè)三角形中能不能有兩個(gè)直角?能不能有2個(gè)鈍角?
環(huán)節(jié)
三、應(yīng)用所學(xué),解決問題。
1、基礎(chǔ)練習(xí)(課本第68頁做一做)
在一個(gè)三角形中,∠1=140度,∠3=25度,求∠2的度數(shù)。
2、判斷題
(1)大三角形的內(nèi)角和大于180度。()
(2)三角形的內(nèi)角和可能是180度。()
(3)一個(gè)三角形中最多只能有一個(gè)直角。()
。4)三角形的三個(gè)內(nèi)角分別可能是30度,60度,70度。()
3、求出下面三角形各角的度數(shù)。
。1)我三邊相等。
。2)我是等腰三角形,我的頂角是96°。(3)我有一個(gè)銳角是40°。
四、總結(jié):這節(jié)課你有什么收獲?
《三角形內(nèi)角和》數(shù)學(xué)教案 篇8
【教學(xué)目標(biāo)】
1.學(xué)生動(dòng)手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。
2.在探究過程中,經(jīng)歷知識(shí)產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識(shí)和初步的空間思維能力。
3.體驗(yàn)探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學(xué)重點(diǎn)】
探究發(fā)現(xiàn)和驗(yàn)證"三角形的內(nèi)角和為180度"的規(guī)律。
【教學(xué)難點(diǎn)】
理解并掌握三角形的內(nèi)角和是180度。
【教具準(zhǔn)備】
PPT課件、三角尺、各類三角形、長方形、正方形。
【學(xué)生準(zhǔn)備】
各類三角形、長方形、正方形、量角器、剪刀等。
【教學(xué)過程】
口算訓(xùn)練(出示口算題)
訓(xùn)練學(xué)生口算的速度與正確率。
一、謎語導(dǎo)入
(出示謎語)
請畫出你猜到的圖形。誰來公布謎底?
同桌互相看一看,你們畫出的三角形一樣嗎?
誰來說說,你畫出的是什么三角形?(學(xué)生匯報(bào))
(1)銳角三角形,(銳角三角形中有幾個(gè)銳角?)
(2)直角三角形,(直角三角形中可以有兩個(gè)直角嗎?)
(3)鈍角三角形,(鈍角三角形中可以有兩個(gè)鈍角嗎?)
看來,在一個(gè)三角形中,只能有一個(gè)直角或一個(gè)鈍角,為什么不能有兩個(gè)直角或兩個(gè)鈍角呢?三角形的三個(gè)角究竟存在什么奧秘呢?這節(jié)課,我們一起來學(xué)習(xí)"三角形的內(nèi)角和。"(板書課題:三角形的內(nèi)角和)
看到這個(gè)課題,你有什么疑問嗎?
(1)什么是內(nèi)角?有沒有同學(xué)知道?
內(nèi):里面,三角形里面的角。
三角形有幾個(gè)內(nèi)角呢?請指出你畫的三角形的內(nèi)角,并分別標(biāo)上∠1、∠2、∠3.
(2)誰還有疑問?什么是內(nèi)角和?誰來解釋?(三個(gè)內(nèi)角度數(shù)的和)。
(3)大膽猜測一下,三角形的內(nèi)角和是多少度呢?
【設(shè)計(jì)意圖】
創(chuàng)設(shè)數(shù)學(xué)化的情境。學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣".這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣。
二、探究新知
有猜想就要有驗(yàn)證,我們一起來探究用什么方法能知道三角形的內(nèi)角和呢?
1、確定研究范圍
先請大家想一想,研究三角形的內(nèi)角和,是不是應(yīng)該包括所用的三角形?
只研究你畫出的那一個(gè)三角形,行嗎?
那就隨便畫,挨個(gè)研究吧?(太麻煩了)
怎么辦?請你想個(gè)辦法吧。
分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)
2、探究三角形的內(nèi)角和
思考一下:你準(zhǔn)備用什么方法探究三角形的內(nèi)角和呢?
小組合作:從你的學(xué)具袋中,任選一個(gè)三角形,來探究三角形的內(nèi)角和是多少度?
小組匯報(bào):
(1)量一量:把三角形三個(gè)內(nèi)角的度數(shù)相加。
直接測量的方法挺好,雖然測量有誤差,但我們知道了三角形的內(nèi)角和在180°左右。究竟是不是一定就是180°呢?哪個(gè)小組還有不同的方法?
(2)拼一拼:把三角形的三個(gè)內(nèi)角剪下來,拼成了一個(gè)平角。
能想到這種剪一剪拼一拼的方法,真不簡單。三個(gè)角拼在一起,看起來像個(gè)平角,究竟是不是平角呢?誰還有別的方法?
(3)折一折:把三角形的三個(gè)角折下來,拼成了一個(gè)平角。
這種方法真了不起,能借助平角的度數(shù)來推想三角形內(nèi)角和是180°。
總結(jié):同學(xué)們動(dòng)腦思考,動(dòng)手操作,運(yùn)用不同的方法來驗(yàn)證三角形的內(nèi)角和。這三種方法都很好,但在操作過程中,難免會(huì)有誤差,不太有說服力。我們能不能借助學(xué)過的圖形,更科學(xué)更準(zhǔn)確的來驗(yàn)證三角形的內(nèi)角和?
3、演繹推理的方法。
正方形四個(gè)角都是直角,正方形內(nèi)角和是多少度?
你能借助正方形創(chuàng)造出三角形嗎?(對角折)
把正方形分成了兩個(gè)完全一樣的直角三角形,每個(gè)直角三角形的內(nèi)角和:360°÷2=180°
再來看看長方形:沿對角線折一折,分成了兩個(gè)完全一樣的直角三角形,內(nèi)角和:360°÷2=180°
這種方法避免了在剪拼過程中操作出現(xiàn)的誤差,
舉例驗(yàn)證,你發(fā)現(xiàn)了什么?
通過驗(yàn)證,知道了直角三角形的內(nèi)角和是180度。
你能把銳角三角形變成直角三角形嗎?
把銳角三角形沿高對折,分成了兩個(gè)直角三角形。
一個(gè)直角三角形的內(nèi)角和是180°,那么這個(gè)銳角三角形的內(nèi)角和就是180°×2=360°了,對嗎?(360-180=180°)
通過計(jì)算,我們知道了這個(gè)銳角三角形的內(nèi)角和是180°,那么所有的銳角三角形的內(nèi)角和都是180°嗎?你是怎么知道的?
通過剛才的計(jì)算,你發(fā)現(xiàn)了什么?(銳角三角形內(nèi)角和180°)
鈍角三角形的內(nèi)角和,你們會(huì)驗(yàn)證嗎?誰來說說你的想法?180×2-90-90=180°
通過驗(yàn)證,你又發(fā)現(xiàn)了什么?(鈍角三角形內(nèi)角和180°)
4、總結(jié)
通過分類驗(yàn)證,我們發(fā)現(xiàn):直角180,銳角180,鈍角180,也就是說:三角形的內(nèi)角和是180°。也驗(yàn)證了我們的猜想是正確的。(板書)
5、想一想,下面三角形的內(nèi)角和是多少度?(小--大)
你有什么新發(fā)現(xiàn)?(三角形的內(nèi)角和與它的大小,形狀沒有關(guān)系。)
【設(shè)計(jì)意圖】
為了滿足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀能動(dòng)性,通過獨(dú)立探究和組內(nèi)交流,實(shí)現(xiàn)對多種方法的體驗(yàn)和感悟。學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗(yàn),更重要的'是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價(jià)值。
三、自主練習(xí)
1、在一個(gè)三角形中,如果想求一個(gè)角的度數(shù),至少得知道幾個(gè)角的度數(shù)呢?(2個(gè))那我們就試一試,挑戰(zhàn)第一關(guān)。(兩道題)
2、算得真快!如果只知道一個(gè)角的度數(shù),還能求出未知角的度數(shù)嗎?挑戰(zhàn)第二關(guān)。(三道題)
3、說得真清楚,如果一個(gè)角的度數(shù)也不知道,你還能求出未知角的度數(shù)嗎?挑戰(zhàn)第三關(guān)。(一道題)
師:同學(xué)們真了不起,從知道兩個(gè)角的度數(shù),到知道一個(gè)角的度數(shù),再到一個(gè)角的度數(shù)也不知道,都能正確求出未知角的度數(shù)。
4、學(xué)無止境,課下,請你利用三角形的內(nèi)角和,探究一下四邊形、五邊形、六邊形的內(nèi)角和各是多少度?
【設(shè)計(jì)意圖】
練習(xí)由淺入深,層層遞進(jìn)。從知道兩個(gè)角的度數(shù),到知道一個(gè)角的度數(shù),再到一個(gè)角的度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),梯度訓(xùn)練,拓展思維。
四、課堂總結(jié)
同學(xué)們,回想一下,這節(jié)課我們學(xué)習(xí)了什么?通過這節(jié)課的學(xué)習(xí),你有哪些收獲呢?
真了不起,同學(xué)們不僅學(xué)到了知識(shí),還掌握了學(xué)習(xí)的方法。"在數(shù)學(xué)的天地里,重要的不是我們知道什么,而是我們怎么知道的",在這節(jié)課上,重要的不是我們知道了三角形的內(nèi)角和是180°,而是我們通過猜測,一步一步驗(yàn)證,得到這個(gè)規(guī)律的過程。
課后反思
《三角形的內(nèi)角和》是五四制青島版四年級(jí)上冊第四單元的信息窗二,本節(jié)課是在學(xué)生學(xué)習(xí)了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎(chǔ)上,讓學(xué)生動(dòng)手操作,通過一系列活動(dòng)得出"三角形的內(nèi)角和等于180°".
本著"學(xué)貴在思,思源于疑"的思想,這節(jié)課我不斷創(chuàng)設(shè)問題情境,讓學(xué)生去猜想、去探究、去發(fā)現(xiàn)新知識(shí)的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念。"問題的提出往往比解答問題更重要",其實(shí)三角形內(nèi)角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識(shí),所以很輕松地就可以答出。但是只是"知其然而不知其所以然".
為此,我設(shè)計(jì)了大量的操作活動(dòng):畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環(huán)節(jié)。在操作活動(dòng)中,老師有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動(dòng)過程,生動(dòng)又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動(dòng)的特點(diǎn),這對他認(rèn)識(shí)能力的提高是有幫助的。
最后通過習(xí)題鞏固三角形內(nèi)角和知識(shí),培養(yǎng)學(xué)生思維的廣闊性,為了強(qiáng)化學(xué)生對這節(jié)課的掌握,從知道兩個(gè)角的度數(shù),到知道一個(gè)角的度數(shù),再到一個(gè)角的度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),層級(jí)練習(xí),步步加深,梯度訓(xùn)練。
教學(xué)是遺憾的藝術(shù)。當(dāng)然本節(jié)課的教學(xué)中,存在許多不盡如意之處:
1、讓學(xué)生養(yǎng)成良好的學(xué)具運(yùn)用習(xí)慣,特別是小組學(xué)生在合作操作時(shí),應(yīng)有效指導(dǎo),對學(xué)生及時(shí)評(píng)價(jià),激勵(lì)表揚(yáng),調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性與主動(dòng)性。
2、學(xué)生在介紹剪拼的方法時(shí),可以讓介紹的學(xué)生先上臺(tái)演示是如何把內(nèi)角拼在一起,這樣學(xué)生在動(dòng)手操作的時(shí)候就可以節(jié)省時(shí)間。
3、在做練習(xí)時(shí),為了趕時(shí)間,題出現(xiàn)的頻率較快,留給學(xué)生計(jì)算思考的時(shí)間不足,可能只照顧到好學(xué)生的進(jìn)程,沒有關(guān)注全體學(xué)生,今后應(yīng)注意這一點(diǎn)。
教學(xué)是一門藝術(shù),上一節(jié)課容易,上好一節(jié)課談何容易,在今后的課堂教學(xué)中,只有勤學(xué)、多練,才能更好的為學(xué)生的學(xué)習(xí)和成長服務(wù),讓自己的人生舞臺(tái)綻放光彩。
《三角形內(nèi)角和》數(shù)學(xué)教案 篇9
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):通過測量、拼、折疊等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°;已知三角形兩個(gè)角的度數(shù),會(huì)求出第三個(gè)角的度數(shù)。
2、能力目標(biāo):通過討論爭辯、操作、推理等培養(yǎng)學(xué)生的思維能力和解決問題的能力;培養(yǎng)學(xué)生的空間觀念,使學(xué)生的創(chuàng)新能力得到發(fā)展;使學(xué)生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗(yàn)證的研究問題的方法。
3、情感目標(biāo):培養(yǎng)學(xué)生的合作精神和探索精神;培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的意識(shí)。
教學(xué)重、難點(diǎn):
掌握三角形的內(nèi)角和是180°。驗(yàn)證三角形的內(nèi)角和是180°。
學(xué)生分析:
在上學(xué)期學(xué)生已經(jīng)掌握了角的分類及度量問題。在本課之前,學(xué)生又研究了三角形的分類。這些都為進(jìn)一步研究三角形內(nèi)角和作了知識(shí)儲(chǔ)備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個(gè)重要性質(zhì)。它有助于理解三角形的三個(gè)內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。
教學(xué)流程:
一、創(chuàng)設(shè)情境,激發(fā)興趣
。ㄕn件出示:兩個(gè)三角形爭論,大的對小的說,我的內(nèi)角和比你大。)
。▽W(xué)生小聲議論著,爭論著。)
師:同學(xué)們,你們能不能幫助大三角形和小三角形解決這個(gè)問題。
生:可以把這兩個(gè)三角形的內(nèi)角比一比。
生:它們不是一個(gè)角在比較,可怎么比呀?
生:我們先畫出一個(gè)大三角形,再畫一個(gè)小三角形。分別量一量這兩個(gè)三角形三個(gè)內(nèi)角的度數(shù),這樣就知道誰的內(nèi)角和大,誰的內(nèi)角和小啦。
師:那好,我們今天就來研究“三角形的內(nèi)角和”。(板書課題。)
【設(shè)計(jì)意圖:通過多媒體出示,引起學(xué)生興趣,使學(xué)生想探索大、小三角形的內(nèi)角和到底誰大?】
二、動(dòng)手操作,探索新知
1、初步感知。
師讓學(xué)生分別畫出不同形狀的三角形。學(xué)生用量角器測量三角形三個(gè)內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略。)
生匯報(bào)測量的結(jié)果:內(nèi)角和約等于180°。
師啟發(fā)學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和180°。(師板書:三角形的內(nèi)角和是180°。)
【設(shè)計(jì)意圖:通過這種方法可以得出準(zhǔn)確的結(jié)論,也容易被學(xué)生理解和接受?赡艹霈F(xiàn)問題:用測量的方法得到的結(jié)果不是剛好180°。使學(xué)生明白是因?yàn)闇y量存在誤差的.緣故!
2、用拼角法驗(yàn)證。
師:剛才同學(xué)們發(fā)現(xiàn),三角形的內(nèi)角和約等于180°,那么到底是不是這樣呢?
生:我們手里有一些三角形,可以動(dòng)手拼一拼。
生:還可以剪一剪。
師:那同學(xué)們就開始吧!
(學(xué)生動(dòng)手進(jìn)行拼、剪、折等方法,檢驗(yàn)三角形內(nèi)角和的度數(shù)。)
生:銳角三角形的內(nèi)角可以拼成一個(gè)平角。因?yàn)槠浇鞘?80°,所以銳角三角形的三個(gè)內(nèi)角和是180°。
生:我把一個(gè)直角三角形的三個(gè)內(nèi)角剪下來,拼成了一個(gè)平角,所以直角三角形的三個(gè)內(nèi)角和也是180°。
生:鈍角三角形的內(nèi)角和也是180°。
。◣煱鍟喝切蔚膬(nèi)角和是180°。)
【設(shè)計(jì)意圖:使學(xué)生明確,因?yàn)槿嫜芯苛酥苯侨切、銳角三角形和鈍角三角形這三類三角形的內(nèi)角和,所以可以得出“三角形的內(nèi)角和等于180°”這一結(jié)論。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗(yàn)證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要。】
三、鞏固新知,拓展應(yīng)用
1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數(shù)。
2.已知∠1、∠2、∠3是三角形的三個(gè)內(nèi)角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學(xué)生猜后,教師抽去遮蓋的紙,進(jìn)行驗(yàn)證。
通過以上的練習(xí)使學(xué)生對三角形內(nèi)角和的應(yīng)用有個(gè)初步認(rèn)識(shí),并積累解決問題的經(jīng)驗(yàn)。
3.師:(出示一個(gè)大三角形)它的內(nèi)角和是多少度?
生:180 °。
師:(出示一個(gè)很小的三角形)它的內(nèi)角和是多少度?
生:180 °。
師:(把大三角形平均分成兩份。指均分后的一個(gè)小三角形)它的內(nèi)角和是多少度?(生有的答90°,有的答180°。)
師:哪個(gè)對?為什么?
生:180°對,因?yàn)樗是一個(gè)三角形。
師:每個(gè)小三角形的度數(shù)是180°,那么這樣的兩個(gè)小三角形拼成一個(gè)大三角形,內(nèi)角和是多少度?(這時(shí)學(xué)生的答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢?(學(xué)生臉上露出疑問。經(jīng)過一番激烈的討論探究后,學(xué)生開始舉手回答。)
生:180°。因?yàn)閮蓚(gè)三角形拼在一起,就變成了一個(gè)三角形了,每個(gè)三角形的內(nèi)角和總是180°。
生:我發(fā)現(xiàn)兩個(gè)小三角形拼成一個(gè)大三角形,拼接在一起的兩條邊上的兩個(gè)角沒有了,比原來兩個(gè)三角形少180°,所以大三角形的內(nèi)角和還是180°,不是360°。
師:你真聰明。(課件演示。)
四、小結(jié)
師:同學(xué)們,你們今天學(xué)了“三角形的內(nèi)角和是180°”的新知識(shí),現(xiàn)在能來幫助大、小三角形進(jìn)行評(píng)判了吧?(生答能。)
師:說一說本節(jié)課的收獲。這節(jié)課你掌握了哪些知識(shí)?學(xué)會(huì)了哪些研究問題的方法?
五、探究性作業(yè)
求下面幾個(gè)多邊形的內(nèi)角和。(圖形略。)
【設(shè)計(jì)意圖:通過這樣的練習(xí),培養(yǎng)學(xué)生思維的靈活性、多樣性,使不同層次的學(xué)生得到不同的發(fā)展,體現(xiàn)教學(xué)的層次性。】
反思:
1、重視動(dòng)手操作,讓學(xué)生在探究中收獲知識(shí)。《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!北竟(jié)課通過量、折、剪、拼等多種活動(dòng),使學(xué)生主動(dòng)探究,找到新舊知識(shí)的聯(lián)系,得出研究問題的結(jié)論,有利于學(xué)生培養(yǎng)空間觀念和動(dòng)手操作能力。
2、小組合作學(xué)習(xí)是新課程倡導(dǎo)的學(xué)習(xí)方式,有利于培養(yǎng)學(xué)生的合作意識(shí)、探索能力、團(tuán)隊(duì)精神。我們要從平時(shí)抓起,在平常的課堂中開展小組合作學(xué)習(xí),可以是前后四人為一組,深入探究合作學(xué)習(xí)的方法和途徑。這樣學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變才能落到實(shí)處,才不會(huì)變成某些公開課的擺設(shè)
《三角形內(nèi)角和》數(shù)學(xué)教案 篇10
。ㄒ唬┙滩牡牡匚缓妥饔
《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材四年級(jí)下冊第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個(gè)重要特征,也是掌握多邊形內(nèi)角和及解決其他實(shí)際問題的基礎(chǔ),因此,學(xué)習(xí),掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。
(二)教學(xué)目標(biāo)
基于以上對教材的分析以及對教學(xué)現(xiàn)狀的思考,我從知識(shí)與技能,教學(xué)過程與方法,情感態(tài)度價(jià)值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):
1。通過"量一量","算一算","拼一拼","折一折"的小組活動(dòng)的方法,探索發(fā)現(xiàn)驗(yàn)證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識(shí)解決一些簡單問題。
2。通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實(shí)驗(yàn),滲透"轉(zhuǎn)化"的數(shù)學(xué)思想。
3。通過數(shù)學(xué)活動(dòng)使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心。培養(yǎng)學(xué)生的創(chuàng)新意識(shí),探索精神和實(shí)踐能力。
。ㄈ┙虒W(xué)重,難點(diǎn)
因?yàn)閷W(xué)生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識(shí)。對于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個(gè)過程中學(xué)生要了解的是"內(nèi)角"的概念,如何驗(yàn)證得出三角形的.內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重點(diǎn)是:驗(yàn)證三角形的內(nèi)角和是180°。
二、說教法,學(xué)法
本節(jié)課主要是通過教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗(yàn)證三角形的內(nèi)角和是180°。
因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出:"要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力"。四年級(jí)學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作,主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從"猜測――驗(yàn)證"展開學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。
三,說教學(xué)過程
我以引入,猜測,證實(shí),深化和應(yīng)用五個(gè)活動(dòng)環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
引入
呈現(xiàn)情境:出示多個(gè)已學(xué)的平面圖形,讓學(xué)生認(rèn)識(shí)什么是"內(nèi)角"。( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個(gè)內(nèi)角 (四個(gè))它的內(nèi)角有什么特點(diǎn) (都是直角)這四個(gè)內(nèi)角的和是多少 (360°)三角形有幾個(gè)內(nèi)角呢 從而引入課題。
【設(shè)計(jì)意圖】
讓學(xué)生整體感知三角形內(nèi)角和的知識(shí),這樣的教學(xué), 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學(xué)知識(shí)背景, 滲透數(shù)學(xué)知識(shí)之間的聯(lián)系, 有效地避免了新知識(shí)的"橫空出現(xiàn)"。
猜測
提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢
【設(shè)計(jì)意圖】
引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°。
(三)驗(yàn)證
。1)量:請學(xué)生每人畫一個(gè)自己喜歡的三角形,接著用量角器量一量,然后把這三個(gè)內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度
。2)撕―拼:利用平角是180°這一特點(diǎn),啟發(fā)學(xué)生能否也把三角形的三個(gè)內(nèi)角撕下來拼在一起,成為一個(gè)平角 請學(xué)生同桌合作,從學(xué)具中選出一個(gè)三角形,撕下來拼一拼。
。3)折—拼:把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角,一個(gè)平角是180°,所以得出三角形的內(nèi)角和是180°。
(4)畫:根據(jù)長方形的內(nèi)角和來驗(yàn)證三角形內(nèi)角和是180°。
一個(gè)長方形有4個(gè)直角,每個(gè)直角90°,那么長方形的內(nèi)角和就是360°,每個(gè)長方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。
【設(shè)計(jì)意圖】
利用已經(jīng)學(xué)過的知識(shí)構(gòu)建新的數(shù)學(xué)知識(shí), 這不僅有助于學(xué)生理解新的知識(shí), 而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角,長方形四個(gè)內(nèi)角的和等知識(shí)聯(lián)系起來, 并使學(xué)生在新舊知識(shí)的連接點(diǎn)和新知識(shí)的生長點(diǎn)上把握好他們之間的內(nèi)在聯(lián)系。在整個(gè)探索過程中, 學(xué)生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。
深化
質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會(huì)是一樣嗎
觀察:(指著黑板上兩個(gè)大小不同但三個(gè)角對應(yīng)相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)
結(jié)論: 角的兩條邊長了, 但角的大小不變。因?yàn)榻堑拇笮∨c邊的長短無關(guān)。
實(shí)驗(yàn): 教師先在黑板上固定小棒, 然后用活動(dòng)角與小棒組成一個(gè)三角形, 教師手拿活動(dòng)角的頂點(diǎn)處, 往下壓, 形成一個(gè)新的三角形, 活動(dòng)角在變大, 而另外兩個(gè)角在變小。這樣多次變化, 活動(dòng)角越來越大, 而另外兩個(gè)角越來越小。最后, 當(dāng)活動(dòng)角的兩條邊與小棒重合時(shí)。
結(jié)論:活動(dòng)角就是一個(gè)平角180°, 另外兩個(gè)角都是0°。
【設(shè)計(jì)意圖】
小學(xué)生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識(shí)聯(lián)系起來,通過讓學(xué)生觀察利用"角的大小與邊的長短無關(guān)"的舊知識(shí)來理解說明。
對于利用精巧的小教具的演示, 讓學(xué)生通過觀察,交流,想象, 充分感受三角形三個(gè)角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。
。ㄎ澹⿷(yīng)用
1;A(chǔ)練習(xí):書本練習(xí)十四的習(xí)題9,求出三角形各個(gè)角的度數(shù)。
2。變式練習(xí):一個(gè)三角形可能有兩個(gè)直角嗎 一個(gè)三角形可能有兩個(gè)鈍角嗎 你能用今天所學(xué)的知識(shí)說明嗎
3。(1)將兩個(gè)完全一樣的直角三角形拼成一個(gè)大三角形, 這個(gè)大三角形的內(nèi)角和是多少
。2) 將一個(gè)大三角形分成兩個(gè)小三角形, 這兩個(gè)小三角形的內(nèi)角和分別是多少
4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習(xí)十四的習(xí)題
【設(shè)計(jì)意圖】
習(xí)題是溝通知識(shí)聯(lián)系的有效手段。在本節(jié)課的四個(gè)層次的練習(xí)中, 能充分注意溝通知識(shí)之間的內(nèi)在聯(lián)系, 使學(xué)生從整體上把握知識(shí)的來龍去脈和縱橫聯(lián)系,逐步形成對知識(shí)的整體認(rèn)知, 構(gòu)建自己的認(rèn)知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運(yùn)用知識(shí)解決問題的能力。
第一題將三角形內(nèi)角和知識(shí)與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運(yùn)用內(nèi)角和知識(shí)和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。
第二題將三角形內(nèi)角和知識(shí)與三角形的分類知識(shí)結(jié)合起來,引導(dǎo)學(xué)生運(yùn)用三角形內(nèi)角和的知識(shí)去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識(shí)之間的聯(lián)系。
第三題通過兩個(gè)三角形的分與合的過程,使學(xué)生感受此過程中三角內(nèi)角的 變化情況, 進(jìn)一步理解三角形內(nèi)角和的知識(shí)。
第四題是對三角形內(nèi)角和知識(shí)的進(jìn)一步拓展, 引導(dǎo)學(xué)生進(jìn)一步研究多邊形的內(nèi)角和。教學(xué)中, 學(xué)生能把這些多邊形分成幾個(gè)三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進(jìn)學(xué)生對多邊形內(nèi)角和知識(shí)的整體構(gòu)建。
《三角形內(nèi)角和》數(shù)學(xué)教案 篇11
一、教學(xué)目標(biāo):
1、理解掌握三角形內(nèi)角和是180°,并運(yùn)用這一性質(zhì)解決一些簡單的問題。
2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實(shí)驗(yàn)活動(dòng)中,體驗(yàn)探索的過程和方法。
3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗(yàn)。
二、教學(xué)重、難點(diǎn):
重點(diǎn):探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。
難點(diǎn):運(yùn)用三角形內(nèi)角和等于180°的性質(zhì)解決一些實(shí)際問題。
教具:課件、三角形若干。
學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個(gè)。
三、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
我們已經(jīng)學(xué)過了三角形的知識(shí),我們來復(fù)習(xí)一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個(gè)角呢?這三個(gè)角都叫做三角形的內(nèi)角,而這三個(gè)內(nèi)角的和就是這個(gè)三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點(diǎn)和規(guī)律呢?我們來看一個(gè)小片段,仔細(xì)聽它們都說了什么?
教師放課件。
課件內(nèi)容說明:一個(gè)大的直角三角形說:“我的個(gè)頭大,我的內(nèi)角和一定比你們大!币粋(gè)鈍角三角形說:“我有一個(gè)鈍角,我的內(nèi)角和才是最大的)一個(gè)小的銳角三角形很委屈的樣子說“是這樣嗎?”
都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評(píng)價(jià))果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。
。ò鍟n題:三角形內(nèi)角和)
(二)自主探究,發(fā)現(xiàn)規(guī)律
1、探究三角形內(nèi)角和的特點(diǎn)。
。1)檢查作業(yè),并提出要求:
昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個(gè)角的度數(shù),都完成了嗎?拿出來吧,一會(huì)我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動(dòng)記錄表。
小組活動(dòng)記錄表
小組成員的姓名
三角形的'形狀
每個(gè)內(nèi)角的度數(shù)
三角形內(nèi)角的和
。ㄒ螅禾钔瓯砗螅埿〗M成員仔細(xì)觀察你發(fā)現(xiàn)了什么?)
②小組合作。
會(huì)使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。
各組長進(jìn)行匯報(bào)。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。
師:實(shí)際上,三角形三個(gè)內(nèi)角和就是180°,只是因?yàn)闇y量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。
2、驗(yàn)證推測。
那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會(huì)想到用折拼或剪拼的方法來看一看三角形的三個(gè)角和起來是不是180°,也就是說三角形的三個(gè)角能不能拼成一個(gè)平角。師生先演示撕下三個(gè)角拼在一起是否是平角,同學(xué)們在下面操作進(jìn)行體驗(yàn),再用課件演示把三個(gè)內(nèi)角折疊在一起(這時(shí)要注意平行折,把一個(gè)頂點(diǎn)放在邊上)學(xué)生也動(dòng)手試一試。
通過我們的驗(yàn)證我們可以得出三角形的內(nèi)角和是180°。
板書:(三角形內(nèi)角和等于180°。)
3、師談話:三個(gè)三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個(gè)三角形說點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)
4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個(gè)角,可以求出第三個(gè)角)
出示書28頁,試一試第3題,并講解。
說明:在直角三角形中一個(gè)銳角等于30°,求另一個(gè)銳角。
生獨(dú)立做,再訂正格式、以及強(qiáng)調(diào)不要忘記寫度。
小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習(xí)。
。ㄈ╈柟叹毩(xí),拓展應(yīng)用
1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個(gè)銳角是75°,另一個(gè)銳角是28°,求第三個(gè)銳角?第二幅圖是直角三角形已知一個(gè)銳角是35°,求另一個(gè)銳角?第三幅圖是鈍角三角形已知一個(gè)銳角是20°,另一個(gè)銳角是45°,求鈍角?
完成,并填在書上。講一講直角三角形還有什么解法。
2、出示29頁第2題。
說明:一個(gè)鈍角三角形說:我的兩個(gè)銳角之和大于90°。
一個(gè)直角三角形說:我的兩個(gè)銳角之和正好等于90°。讓學(xué)生判斷。
3、畫一畫:
出示四邊形和六邊形。運(yùn)用三角形內(nèi)角和是180°計(jì)算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?
三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時(shí)發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
。ㄋ模┱n堂總結(jié)
讓學(xué)生說說在這節(jié)課上的收獲!
《三角形內(nèi)角和》數(shù)學(xué)教案 篇12
【設(shè)計(jì)理念】
遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一。《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出,讓學(xué)生學(xué)習(xí)有價(jià)值的數(shù)學(xué),讓學(xué)生帶著問題、帶著自己的思想、自己的思維進(jìn)入數(shù)學(xué)課堂,對于學(xué)生的數(shù)學(xué)學(xué)習(xí)有著重要作用。因此,我嘗試著將數(shù)學(xué)文本、課外預(yù)習(xí)、課堂教學(xué)三方有機(jī)整合,在質(zhì)疑、解疑、釋疑中展開教學(xué),培養(yǎng)學(xué)生提出問題、分析問題和解決問題的探究能力。
【教材分析】
三角形的內(nèi)角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。學(xué)生在掌握知識(shí)方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識(shí)的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
【學(xué)情分析】
學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識(shí),大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計(jì)意圖不在于了解,而在于驗(yàn)證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點(diǎn)。四年級(jí)的學(xué)生已經(jīng)初步具備了動(dòng)手操作的意識(shí)和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運(yùn)用已有知識(shí)和經(jīng)驗(yàn),通過交流、比較、評(píng)價(jià)尋找解決問題的途徑和策略。
【學(xué)習(xí)目標(biāo)】
1.通過測量、剪、拼等活動(dòng)發(fā)現(xiàn)、探索和發(fā)現(xiàn)“三角形內(nèi)角和是180°”。
2.學(xué)會(huì)根據(jù)“三角形內(nèi)角和是180°”這一知識(shí)求三角形中一個(gè)未知數(shù)的度數(shù)。
3.在課堂活動(dòng)中培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的空間想象力。并通過動(dòng)手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動(dòng),向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
4.使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
【教學(xué)重點(diǎn)】
探索和發(fā)現(xiàn)“三角形的內(nèi)角和是180°”。
【教學(xué)難點(diǎn)】
運(yùn)用三角形的內(nèi)角和解決實(shí)際問題。
【教學(xué)準(zhǔn)備】
教師:多媒體、剪好的不同類型的三角形。
學(xué)生:量角器、剪刀、剪好的不同類型的三角形。
【教學(xué)過程】
一、創(chuàng)設(shè)情景,引出問題
1.猜謎語。
師:同學(xué)們,你們喜歡猜謎語嗎?今天老師給你們帶來了一則謎語。請同學(xué)們讀一下(出示謎語)。
師:打一幾何圖形。猜猜看!
學(xué)生猜謎語。
根據(jù)學(xué)生的回答,出示謎底。
師:真是三角形,同學(xué)們的反應(yīng)真快!
2.復(fù)習(xí)三角形的內(nèi)容。
其實(shí),三角形我們并不陌生,它是一種特別的平面圖形。關(guān)于三角形,你們已經(jīng)掌握了哪些知識(shí)?
指名學(xué)生回答。
(當(dāng)學(xué)生回答出三角形有3個(gè)頂點(diǎn)、3條邊和3個(gè)角時(shí),請這名學(xué)生到臺(tái)上分別指出三角形的3個(gè)角,并標(biāo)出角。)
3.引出課題。
師:同學(xué)們知道的還真不少,可見你們平時(shí)學(xué)習(xí)很用功。知道嗎?其實(shí)三角形的這三個(gè)角就是三角形的三個(gè)內(nèi)角,而這三個(gè)角的度數(shù)和就是三角形的內(nèi)角和。你們知道三角形的內(nèi)角和是多少度嗎?今天這節(jié)課就讓我們一起走進(jìn)三角形內(nèi)角和,探索其中的奧秘。
(板書課題:三角形的內(nèi)角和)
二、探究新知
1.討論、交流驗(yàn)證知識(shí)的方法。
師:那同學(xué)們用什么方法來研究三角形的內(nèi)角和呢?趕緊商量一下。(同桌交流)
學(xué)生匯報(bào):①用量的方法;②用拼的方法;③用折的方法...
2.操作驗(yàn)證。
師:同學(xué)們的點(diǎn)子還真多!現(xiàn)在請同學(xué)們拿出準(zhǔn)備好的三角形,
選1個(gè)自己喜歡的三角形,選擇自己喜歡的方法進(jìn)行驗(yàn)證。(或說研究)等研究完了我們再交流,發(fā)現(xiàn)了什么,好嗎?好,現(xiàn)在開始!
3.學(xué)生匯報(bào)。
師:如果你們已經(jīng)完成了,就把你的小手舉起來示意老師。老師有點(diǎn)迫不及待了,想趕緊分享一下你們研究的成果。誰先來說?
學(xué)生匯報(bào),教師適時(shí)板書。
、儆昧康姆椒ǎ
指名學(xué)生匯報(bào)度量的結(jié)果,教師板書。(指兩名學(xué)生匯報(bào))
教師白板演示測量方法,并計(jì)算和板書出結(jié)果。
教師:同樣是測量的方法,有的同學(xué)得了180,有的不是180°,為什么會(huì)出現(xiàn)這種情況?(指名學(xué)生說)
師:可能我們測量的時(shí)候會(huì)有誤差,但是同學(xué)們選擇比較精確的測量工具,使用正確的測量方法,還是可以得到精確的結(jié)果?磥磉@個(gè)辦法不能使人很信服,有沒有別的方法驗(yàn)證?
、谟闷吹姆椒
a.學(xué)生匯報(bào)拼的方法并上臺(tái)演示。
我這里也有一個(gè)鈍角三角形,請兩名同學(xué)上臺(tái)演示。
b.請大家四人小組合作,用他的方法驗(yàn)證其它三角形。
c.展示學(xué)生作品。
d.師展示。
師:我們用量、拼得到了180度,還有什么方法?
、塾谜鄣姆椒
師:還想向同學(xué)們請同學(xué)們看一看他是怎么折的(演示)。
師:剛才我們用量的方法、拼的方法和折的.方法研究了銳角三角形、直角三角形和鈍角三角形內(nèi)角和,得出什么結(jié)論了?
教師根據(jù)學(xué)生板書:(任意)三角形的內(nèi)角和是180度。
、軘(shù)學(xué)文化
師:除了我們這節(jié)課大家想到的方法,還有很多方法也能驗(yàn)證三角形的內(nèi)角和是180°,到初中我們還要更嚴(yán)密的方法證明三角形的內(nèi)角和是180°。其實(shí),早在300多年前就有一位偉大的數(shù)學(xué)家,用科學(xué)的數(shù)學(xué)方法見證了任意三角形的內(nèi)角和都是180度。這位偉大的數(shù)學(xué)家就是帕斯卡(出示帕斯卡),他是法國著名的數(shù)學(xué)家、物理學(xué)家。他在12歲時(shí)發(fā)現(xiàn)了三角形內(nèi)角和定律,17時(shí)寫出了《圓錐截線論》19歲設(shè)計(jì)了第一架計(jì)算機(jī)。
三、鞏固練習(xí)
數(shù)學(xué)家發(fā)現(xiàn)了知識(shí),今天我們也能夠總結(jié)出知識(shí)。你們棒不棒?真厲害,接下來白老師要考考你們。眼睛看好啦!
1.出示:我是小判官(對的打“√”錯(cuò)的“×”。)
強(qiáng)調(diào):把兩個(gè)小三角形拼在一起,問:大三角形的內(nèi)角和是多少度?
教師:為什么不是360°?學(xué)生回答。
2.接下來我要獎(jiǎng)勵(lì)你們一個(gè)游戲:《幫角找朋友》
3.求未知角的度數(shù)。
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!
、俪鍪镜谝粋(gè)三角形,學(xué)生嘗試獨(dú)立完成,教師巡視。
教師:剛才,我們利用了三角形的什么?
、诮處煟喝绻粋(gè)都不知道,或只知道1個(gè)角,你能知道三角形各角的度數(shù)嗎?求出下面三角形各角的度數(shù)。
a.我三邊相等;b.我是等腰三角形,我的頂角是96°。c.我有一個(gè)銳角是40°。
教師:如果我們?nèi)デ笠粋(gè)三角形內(nèi)角的度數(shù)的時(shí)候,首先我們要去觀察三角形,找出它的特點(diǎn),找出它給出的已知角的度數(shù),然后再去計(jì)算三角形未知的內(nèi)角的度數(shù)。
四、拓展延伸
師:看來三角形內(nèi)角和的知識(shí)難不倒你們了,我們來一個(gè)挑戰(zhàn)題。你們敢接受挑戰(zhàn)嗎?(出示四邊形)你知道它的內(nèi)角和是多少嗎?指名生回答,并說出理由。同學(xué)們,你們能用今天學(xué)的知識(shí)算出它的內(nèi)角和嗎?
接著讓學(xué)生嘗試求5邊形和6邊形的內(nèi)角和。
小結(jié):求多邊形的內(nèi)角和,可以從一個(gè)頂點(diǎn)出發(fā),引出它的對角線,這樣就把這個(gè)多邊形分割成了N個(gè)三角形,它的內(nèi)角和就是N個(gè)180°
五、課堂總結(jié)。
師:這節(jié)課你有什么收獲?
學(xué)生自由發(fā)言。
師生交流后總結(jié):知道了三角形的內(nèi)角和是180度,根據(jù)這個(gè)規(guī)律知道可以用180°減去兩個(gè)內(nèi)角的度數(shù),求出第三個(gè)未知角的度數(shù)。
同學(xué)們,只要我們在日常的學(xué)習(xí)中,細(xì)心觀察,大膽質(zhì)疑,認(rèn)真研究,一定會(huì)有意想不到的收獲。
六、作業(yè)布置
完成教材練習(xí)十六的第1、3題。
七、板書設(shè)計(jì):
( 任意)三角形的內(nèi)角和是180°
∠1+∠2+∠3=180°
度量 剪拼 折拼
《三角形內(nèi)角和》數(shù)學(xué)教案 篇13
本節(jié)微課視頻是蘇教版數(shù)學(xué)教科書四年級(jí)下冊第78~79頁的教學(xué)內(nèi)容。在教學(xué)之前,學(xué)生已經(jīng)掌握了角的概念、角的分類和角的測量;認(rèn)識(shí)了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個(gè)頂點(diǎn)、三條邊和三個(gè)角。這些已經(jīng)構(gòu)成學(xué)生進(jìn)一步學(xué)習(xí)的認(rèn)知基礎(chǔ)!度切蔚膬(nèi)角和》是三角形的一個(gè)重要性質(zhì)。學(xué)生在學(xué)習(xí)四年級(jí)上冊“角的度量”時(shí),通過測量三角尺三個(gè)角的度數(shù),知道三角尺三個(gè)角加起來的和是180度,再加上課前的預(yù)習(xí),大部分的學(xué)生已經(jīng)能得出結(jié)論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機(jī)械性的記憶。因此,本節(jié)課的重點(diǎn)不是結(jié)論,而是驗(yàn)證結(jié)論的過程。教材組織學(xué)生對不同形狀、不同大小的三角形的內(nèi)角和進(jìn)行探索,通過轉(zhuǎn)化、推理、比較、操作和驗(yàn)證,總結(jié)概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生的自主學(xué)習(xí)能力和推理能力。
下面就具體談?wù)勎⒄n的教學(xué)設(shè)計(jì):
一、 教學(xué)目標(biāo)
1、通過測量、轉(zhuǎn)化、觀察和比較等活動(dòng)探索發(fā)現(xiàn)并驗(yàn)證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結(jié)論解決求三角形中未知角的度數(shù)等實(shí)際問題。
2、通過折一折、拼一拼和剪一剪等一系列的操作活動(dòng)培養(yǎng)學(xué)生的聯(lián)想意識(shí)和動(dòng)手操作能力。體驗(yàn)驗(yàn)證結(jié)論的過程與方法,提高學(xué)生分析和解決問題的能力。
3、使學(xué)生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學(xué)生積極主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
二、 教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):讓學(xué)生親自驗(yàn)證并總結(jié)出三角形的內(nèi)角和是180度的結(jié)論
難點(diǎn):對不同驗(yàn)證方法的理解和掌握。
三、 教學(xué)過程
。ㄒ唬┵|(zhì)疑——發(fā)現(xiàn)問題,提出問題
出示學(xué)生熟悉的一副三角尺,讓學(xué)生說說每塊三角尺中各個(gè)內(nèi)角的度數(shù)。試著計(jì)算每塊三角尺的三個(gè)內(nèi)角的度數(shù)加起來的和是多少度?
交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?
引導(dǎo)學(xué)生得出三角尺的三個(gè)內(nèi)角的度數(shù)和是180度。
提問:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結(jié)論:直角三角形的內(nèi)角和是180度。)
你有什么辦法驗(yàn)證這一結(jié)論呢?(動(dòng)手操作,尋找答案)
方法一:拿出不同的直角三角形,分別測量三個(gè)內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個(gè)內(nèi)角的和都在180度左右)
方法二:用兩個(gè)相同的直角三角形拼成一個(gè)長方形,由于長方形的`四個(gè)內(nèi)角和是360度,因此能得出一個(gè)直角三角形的三個(gè)內(nèi)角和是180度。
啟發(fā):直角三角形的內(nèi)角和是180度,這一結(jié)論讓你聯(lián)想到了什么?你能提出什么新的數(shù)學(xué)問題呢?
引導(dǎo):從直角三角形的內(nèi)角和聯(lián)想到所有三角形的內(nèi)角和,提出問題:所有三角形的內(nèi)角和都是180度嗎?
。ǘ┨骄俊治鰡栴},解決問題
出示三個(gè)三角形:直角三角形、銳角三角形和鈍角三角形。
引導(dǎo):直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。
提問:你有什么辦法來驗(yàn)證這一猜想呢?
拿出事先從課本第113頁剪下來的3個(gè)三角形,動(dòng)手操作,自主探索,發(fā)現(xiàn)規(guī)律。
方法一:可以像上面那樣先測量每個(gè)三角形的三個(gè)內(nèi)角的度數(shù),再計(jì)算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學(xué)生測量計(jì)算,教師巡視指導(dǎo)。
引導(dǎo):測量時(shí)要盡量做到準(zhǔn)確,測量是存在誤差的,對于測量的不準(zhǔn)的同學(xué)要重新測定和確認(rèn),計(jì)算出它們的和,發(fā)現(xiàn)其中的規(guī)律。
方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個(gè)內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個(gè)內(nèi)角拼在一起呢?我們可以將三角形中的3個(gè)內(nèi)角撕下來,再拼在一起,會(huì)發(fā)現(xiàn)拼成了一個(gè)平角,是180度。
方法三:把三角形的三個(gè)內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個(gè)內(nèi)角折過來拼在一起,同樣會(huì)發(fā)現(xiàn)拼成一個(gè)平角,是180度。
方法四:將銳角三角形和鈍角三角形分別分成兩個(gè)直角三角形,利用直角三角形內(nèi)角和是180度進(jìn)行推理。180+180=360度,360-90-90=180度。
。ㄈw納——獲得結(jié)論
交流:回顧以上3個(gè)三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?
總結(jié):通過測量計(jì)算、拼一拼和折一折的方法,我們可以消除心中的問號(hào),肯定得說出所有三角形的內(nèi)角和都是180度這一結(jié)論。
。ㄋ模┩卣埂柟叹毩(xí)
1、將一個(gè)大三角形剪成兩個(gè)小三角形,每個(gè)小三角形的內(nèi)角和是多少度?
2、在一個(gè)三角形中,根據(jù)兩個(gè)內(nèi)角的度數(shù),求第三個(gè)內(nèi)角的度數(shù)?
《三角形內(nèi)角和》數(shù)學(xué)教案 篇14
教學(xué)內(nèi)容
人教版小學(xué)數(shù)學(xué)第八冊第五單元第85頁例5
任務(wù)分析
教材分析: 《三角形的內(nèi)角和》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(數(shù)學(xué))四年級(jí)下冊第五單元《三角形》中的一個(gè)教學(xué)內(nèi)容。這部分內(nèi)容是在學(xué)生學(xué)習(xí)了角的度量,角的分類,三角形的認(rèn)識(shí),三角形的分類的基上進(jìn)行教學(xué)的。它是三角形的一個(gè)重要性質(zhì),有助于學(xué)生理解三角形的三個(gè)內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)的基礎(chǔ)。教材通過實(shí)際操作,引導(dǎo)學(xué)生用實(shí)驗(yàn)的方法探索并歸納出這一規(guī)律,即任意一個(gè)三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學(xué)生探究的特點(diǎn),通過動(dòng)手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學(xué)內(nèi)容的核心思想體現(xiàn)在讓學(xué)生經(jīng)歷猜想—驗(yàn)證—結(jié)論的過程,來認(rèn)識(shí)和體驗(yàn)三角形內(nèi)角和的特點(diǎn)。
學(xué)情分析:通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識(shí),會(huì)用工具量角、畫角,具備了探索三角形內(nèi)角和的知識(shí)與基礎(chǔ)技能。在四年級(jí)上冊《角的度量》的學(xué)習(xí)中,學(xué)生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關(guān)的補(bǔ)充習(xí)題和數(shù)學(xué)練習(xí)冊的練習(xí)中,也有要求測量任意三角形的三個(gè)內(nèi)角的度數(shù)并求出它們的和的練習(xí),很多學(xué)生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進(jìn)行驗(yàn)證,因此,學(xué)生在這節(jié)課上的主要任務(wù)是通過實(shí)驗(yàn)操作驗(yàn)證三角形的內(nèi)角和是180°。
教學(xué)目標(biāo)
1、通過實(shí)驗(yàn)、操作、推理歸納出三角形內(nèi)角和是180°。
2、能運(yùn)用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的'度數(shù)并運(yùn)用解決實(shí)際生活問題。
3、通過拼擺,感受數(shù)學(xué)的轉(zhuǎn)化思想。
教學(xué)重點(diǎn)
探究發(fā)現(xiàn)和驗(yàn)證“三角形的內(nèi)角和180度”。
教學(xué)難點(diǎn)
驗(yàn)證三角形的內(nèi)角和是180度。
教學(xué)準(zhǔn)備
多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。
教學(xué)過程
一、復(fù)習(xí)舊知,學(xué)習(xí)鋪墊
1、一個(gè)平角是多少度?等于幾個(gè)直角?
2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解規(guī)律
1、說明三角形的三個(gè)內(nèi)角和
說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個(gè)角?
師(指出):三角形的這三個(gè)角叫做三角形的三個(gè)內(nèi)角,這三個(gè)內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。
板書課題:“三角形的內(nèi)角和”。
揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。
2、探究三角形的內(nèi)角和規(guī)律
探究1:量一量,算一算
以小組為單位,用量角器計(jì)算出三種三角形的內(nèi)角和各是多少度?
生討論匯報(bào),并引導(dǎo)學(xué)生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。
師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?
學(xué)生預(yù)設(shè):有學(xué)生可能會(huì)說出三角形的內(nèi)角和就是180°,這時(shí)老師可以提問,為什么就是180°?我們要進(jìn)行驗(yàn)證,你有什么辦法呢?
探究2:擺一擺,拼一拼
引導(dǎo):我們剛剛每個(gè)三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?
生可能很難想到,可以提示學(xué)生:把三個(gè)內(nèi)角拼成一個(gè)角就只要量一次角。讓我們一起動(dòng)手做一做
如圖:
。1)
銳角的三個(gè)內(nèi)角拼成了一個(gè)平角,引導(dǎo)學(xué)生說出:銳角三角形的內(nèi)角和是180°.
。2)
讓學(xué)生小組合作用同樣的方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.
。3)
讓學(xué)生獨(dú)立用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.
引導(dǎo)學(xué)生歸納:三角形的內(nèi)角和是180°。
是不是所有的三角形的內(nèi)角和都是180°呢? (是,因?yàn)檫@三類三角形包括了所有三角形。)
板書:三角形的內(nèi)角和是180°
三、鞏固練習(xí),應(yīng)用規(guī)律
1、在一個(gè)三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?
學(xué)生獨(dú)立完成,并說出原因:因?yàn)槿切蔚膬?nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一個(gè)等腰三角形的頂角是80°,它的兩個(gè)底角各是多少度?
學(xué)生分析:因?yàn)榈妊切蔚膬蓚(gè)底角相等,又因?yàn)槿切蔚膬?nèi)角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展練習(xí),深化規(guī)律
1、求出下面各角的度數(shù)。
。1) (2)
2、判斷
(1)三角形任意兩個(gè)內(nèi)角的和大于第三個(gè)角。( )
。2)銳角三角形任意兩個(gè)內(nèi)角的和大于直角。( )
。3)有一個(gè)角是60°的等腰三角形不一定是等邊三角形。( )
3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?
。 ) ( )
五、課堂小結(jié),分享提升
1、談?wù)勥@節(jié)課你有什么收獲?
2、課后思考題
三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)
板書設(shè)計(jì)
【《三角形內(nèi)角和》數(shù)學(xué)教案】相關(guān)文章:
《三角形內(nèi)角和》數(shù)學(xué)教案03-26
《三角形內(nèi)角和》數(shù)學(xué)教案12篇03-26
《三角形內(nèi)角和》數(shù)學(xué)教案(12篇)03-26
《三角形的內(nèi)角和》反思02-26
三角形內(nèi)角和教案02-19
三角形的內(nèi)角數(shù)學(xué)教案02-08
《三角形的內(nèi)角和》反思[精華]02-28
三角形內(nèi)角和教案15篇02-20