八年級(jí)數(shù)學(xué)上冊(cè)教案15篇(薦)
作為一名教學(xué)工作者,編寫教案是必不可少的,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。那么應(yīng)當(dāng)如何寫教案呢?下面是小編為大家整理的八年級(jí)數(shù)學(xué)上冊(cè)教案,歡迎閱讀,希望大家能夠喜歡。
八年級(jí)數(shù)學(xué)上冊(cè)教案1
1、已知任意RtΔABC,∠C = 90,再畫RtΔABC,使∠C=∠C=90,AB=AB,BC=BC。把畫好的RtΔABC剪下來,放到RtΔABC上,它們?nèi)葐幔?/p>
通過作圖,發(fā)現(xiàn)這樣所做的兩個(gè)直角三角形完全重合在一起,由此可以得到結(jié)論:斜邊和一條直角邊分別相等的兩個(gè)直角三角形_______,簡(jiǎn)寫成“__________________”或“______”。
2、用數(shù)學(xué)語言表示兩個(gè)直角三角形全等。
在RtΔABC與RtΔABC中
AB=AB
BC= ____
∴RtΔABC≌_________( )
直角三角形是特殊的三角形,所以不僅有一般三角形判定全等的方法:_________、_________、_________、_________、還有直角三角形特殊的判定方法 _________。
3、例題學(xué)習(xí)
如圖,AC⊥BC,BD⊥AD,AC=BD。求證:BC=AD
1、兩直角三角形,兩直角邊對(duì)應(yīng)相等,這兩個(gè)直角三角形全等,是根據(jù)兩三角形全等的“_______________”條件。
2、兩直角三角形,斜邊和一個(gè)銳角對(duì)應(yīng)相等,這兩個(gè)直角三角形全等,是根據(jù)兩三角形全等的“_______________”條件。
3、兩直角三角形,一個(gè)銳角、一條直角邊對(duì)應(yīng)相等,這兩個(gè)直角三角形全等,是根據(jù)兩三角形全等的“_______________”條件。
4、兩直角三角形全等的特殊條件是_________和__________對(duì)應(yīng)相等。
5、(1)如圖,∠ACB=∠ADB=90,要使ΔABC≌ΔBAD,還需增加一個(gè)什么條件?把增加的條件填在橫線上,并在后面的括號(hào)填上判定全等的理由。
、賍_______________( )
、赺_______________( )
。2)如圖所示,AC=AD,∠C=∠D=90,你能說明BC=BD嗎?
6、如圖,兩根長(zhǎng)度為12米的繩子,一端系在旗桿上,另一端分別固定在地面的兩個(gè)木樁上,兩個(gè)木樁離旗桿底部的距離相等嗎?請(qǐng)說明你的'理由。
1、如圖所示,有兩個(gè)長(zhǎng)度相等的滑梯,左邊滑梯的高AC與右邊滑梯水平方向的長(zhǎng)度DF相等,兩滑梯傾斜角∠ABC與∠DFE有什么關(guān)系?
2、如圖1,E、F分別為線段AC上的兩個(gè)動(dòng)點(diǎn),且DE⊥AC于E點(diǎn),BF⊥AC于F點(diǎn),
若AB=CD,AF=CE,BD交AC于M點(diǎn)。(1)求證:MB=MD,ME=MF;(2)當(dāng)E、F兩點(diǎn)移動(dòng)至圖2所示的位置時(shí),其余條件不變,上述結(jié)論是否成立?若成立,給予證明。
四、
課后反思:_____________________________________________________。
八年級(jí)數(shù)學(xué)上冊(cè)教案2
【教學(xué)目標(biāo)】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)重難點(diǎn)】
重點(diǎn):理解分式有意義的條件,分式的值為零的條件.
難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)過程】
一、課堂導(dǎo)入
1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時(shí).
輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.
3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義.即當(dāng)B≠0時(shí),分式才有意義.
二、例題講解
例1:當(dāng)x為何值時(shí),分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.
(補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的'值為0?
(1);(2);(3).
【分析】分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當(dāng)x取何值時(shí),下列分式有意義?
3.當(dāng)x為何值時(shí),分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@.
五、布置作業(yè)
課本128~129頁練習(xí).
八年級(jí)數(shù)學(xué)上冊(cè)教案3
一、全章要點(diǎn)
1、勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)
2、勾股定理的逆定理 如果三角形的三邊長(zhǎng):a、b、c,則有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。
3、勾股定理的證明 常見方法如下:
方法一: , ,化簡(jiǎn)可證.
方法二:
四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積.
四個(gè)直角三角形的面積與小正方形面積的和為
大正方形面積為 所以
方法三: , ,化簡(jiǎn)得證
4、勾股數(shù) 記住常見的勾股數(shù)可以提高解題速度,如 ; ; ; ;8,15,17;9,40,41等
二、經(jīng)典訓(xùn)練
(一)選擇題:
1. 下列說法正確的是( )
A.若 a、b、c是△ABC的三邊,則a2+b2=c2;
B.若 a、b、c是Rt△ABC的三邊,則a2+b2=c2;
C.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2;
D.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2.
2. △ABC的三條邊長(zhǎng)分別是 、 、 ,則下列各式成立的是( )
A. B. C. D.
3.直角三角形中一直角邊的長(zhǎng)為9,另兩邊為連續(xù)自然數(shù),則直角三角形的周長(zhǎng)為( )
A.121 B.120 C.90 D.不能確定
4.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長(zhǎng)為( )
A.42 B.32 C.42 或 32 D.37 或 33
(二)填空題:
5.斜邊的邊長(zhǎng)為 ,一條直角邊長(zhǎng)為 的直角三角形的面積是 .
6.假如有一個(gè)三角形是直角三角形,那么三邊 、 、 之間應(yīng)滿足 ,其中 邊是直角所對(duì)的邊;如果一個(gè)三角形的三邊 、 、 滿足 ,那么這個(gè)三角形是 三角形,其中 邊是 邊, 邊所對(duì)的角是 .
7.一個(gè)三角形三邊之比是 ,則按角分類它是 三角形.
8. 若三角形的三個(gè)內(nèi)角的比是 ,最短邊長(zhǎng)為 ,最長(zhǎng)邊長(zhǎng)為 ,則這個(gè)三角形三個(gè)角度數(shù)分別是 ,另外一邊的平方是 .
9.如圖,已知 中, , , ,以直角邊 為直徑作半圓,則這個(gè)半圓的面積是 .
10. 一長(zhǎng)方形的一邊長(zhǎng)為 ,面積為 ,那么它的一條對(duì)角線長(zhǎng)是 .
三、綜合發(fā)展:
11.如圖,一個(gè)高 、寬 的大門,需要在對(duì)角線的頂點(diǎn)間加固一個(gè)木條,求木條的`長(zhǎng).
12.一個(gè)三角形三條邊的長(zhǎng)分別為 , , ,這個(gè)三角形最長(zhǎng)邊上的高是多少?
13.如圖,小李準(zhǔn)備建一個(gè)蔬菜大棚,棚寬4m,高3m,長(zhǎng)20m,棚的斜面用塑料薄膜遮蓋,不計(jì)墻的厚度,請(qǐng)計(jì)算陽光透過的最大面積.
14.如圖,有一只小鳥在一棵高13m的大樹樹梢上捉蟲子,它的伙伴在離該樹12m,高8m的一棵小樹樹梢上發(fā)出友好的叫聲,它立刻以2m/s的速度飛向小樹樹梢,那么這只小鳥至少幾秒才可能到達(dá)小樹和伙伴在一起?
15.如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn) 離點(diǎn) 的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn) 爬到點(diǎn) ,需要爬行的最短距離是多少?
16.中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車在城街路上行駛速度不得超過 km/h.如圖,,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方 m處,過了2s后,測(cè)得小汽車與車速檢測(cè)儀間距離為 m,這輛小汽車超速了嗎?
八年級(jí)數(shù)學(xué)上冊(cè)教案4
教學(xué)目標(biāo):
1.了解軸對(duì)稱圖形和兩個(gè)圖形關(guān)于某直線對(duì)稱的概念.
2.能識(shí)別簡(jiǎn)單的軸對(duì)稱圖形及其對(duì)稱軸(直線),能找出兩個(gè)圖形關(guān)于某直線對(duì)稱的對(duì)稱點(diǎn).
3.了解軸對(duì)稱圖形與兩個(gè)圖形關(guān)于某直線對(duì)稱的區(qū)別和聯(lián)系.
教學(xué)重點(diǎn):
1、軸對(duì)稱圖形和兩個(gè)圖形成軸對(duì)稱的概念;
2、探索軸對(duì)稱的性質(zhì)。
教學(xué)難點(diǎn):
1、能夠識(shí)別軸對(duì)稱圖形并找出它的`對(duì)稱軸;
2、能運(yùn)用其性質(zhì)解答簡(jiǎn)單的幾何問題。
教學(xué)方法啟發(fā)誘導(dǎo)法
教具準(zhǔn)備多媒體課件,剪刀,彩色紙
教學(xué)過程
一、情境導(dǎo)入
同學(xué)們,自古以來,對(duì)稱圖形被認(rèn)為是和諧、美麗的.不論在自然界里還是在建筑中,不論在藝術(shù)中還是在科學(xué)中,甚至最普通的日常生活用品中,對(duì)稱圖形隨處可見,對(duì)稱給我們帶來了美的感受!而軸對(duì)稱是對(duì)稱中很重要的一種,今天就讓我們一起走進(jìn)軸對(duì)稱世界,探索它的秘密吧!
我們先來看一下這節(jié)課的學(xué)習(xí)目標(biāo)
1.了解軸對(duì)稱圖形和兩個(gè)圖形關(guān)于某直線對(duì)稱的概念.
2.能識(shí)別簡(jiǎn)單的軸對(duì)稱圖形及其對(duì)稱軸,能找出兩個(gè)圖形關(guān)于某直線對(duì)稱的對(duì)稱點(diǎn).
3.了解軸對(duì)稱圖形與兩個(gè)圖形關(guān)于某直線對(duì)稱的區(qū)別和聯(lián)系.
二、自主探究
【探究一】
。ㄒ唬┪覀兿葋砜磶追鶊D片,觀察它們都有些什么共同特征.
1、它們都是對(duì)稱的.
2、它們沿著某條直線折疊后,直線兩旁的部分能完全重合。
。ǘ﹦(dòng)畫展示蝴蝶的折疊過程
。ㄈ┳鲆蛔
1.準(zhǔn)備一張紙;
2.對(duì)折紙;
3.用鉛筆在紙上畫出你喜歡的圖案;
4.剪下你畫的圖案;
5.把紙打開鋪平,觀察所得的圖案,位于折痕兩側(cè)的部分有什么關(guān)系?
【答】能互相重合一模一樣是對(duì)稱的
從而得出軸對(duì)稱圖形的概念:
如果一個(gè)圖形沿著一條直線折疊,只限兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。我們說這個(gè)圖形關(guān)于這條直線對(duì)稱。
八年級(jí)數(shù)學(xué)上冊(cè)教案5
一、學(xué)生起點(diǎn)分析
通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長(zhǎng)都是勾股數(shù),甚至有些直角三角形的邊長(zhǎng)連有理數(shù)都不是,例如:①腰長(zhǎng)為1的等腰直角三角形的底邊長(zhǎng)不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長(zhǎng)不是有理數(shù),這為引入“新數(shù)”奠定了必要性.
二、教學(xué)任務(wù)分析
《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第二章《實(shí)數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個(gè)課時(shí)完成,第1課時(shí)讓學(xué)生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識(shí),會(huì)根據(jù)要求畫線段;第2課時(shí)借助計(jì)算器感受無理數(shù)是無限不循環(huán)小數(shù),會(huì)判斷一個(gè)數(shù)是無理數(shù).本課是第1課時(shí),學(xué)生將在具體的實(shí)例中,通過操作、估算、分析等活動(dòng),感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個(gè)數(shù)是不是有理數(shù).
本節(jié)課的教學(xué)目標(biāo)是:
、偻ㄟ^拼圖活動(dòng),讓學(xué)生感受客觀世界中無理數(shù)的存在;
、谀芘袛嗳切蔚哪尺呴L(zhǎng)是否為無理數(shù);
、蹖W(xué)生親自動(dòng)手做拼圖活動(dòng),培養(yǎng)學(xué)生的動(dòng)手能力和探索精神;
、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對(duì)有理數(shù)和無理數(shù)的理解;
三、教學(xué)過程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了6個(gè)教學(xué)環(huán)節(jié):
第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):質(zhì)疑
內(nèi)容:【想一想】
、乓粋(gè)整數(shù)的平方一定是整數(shù)嗎?
、埔粋(gè)分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?
目的:作必要的知識(shí)回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.
效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用
第二環(huán)節(jié):課題引入
內(nèi)容:1.【算一算】
已知一個(gè)直角三角形的兩條直角邊長(zhǎng)分別為1和2,算一算斜邊長(zhǎng) 的平方 ,并提出問題: 是整數(shù)(或分?jǐn)?shù))嗎?
2.【剪剪拼拼】
把邊長(zhǎng)為1的兩個(gè)小正方形通過剪、拼,設(shè)法拼成一個(gè)大正方形,你會(huì)嗎?
目的:選取客觀存在的.“無理數(shù)“實(shí)例,讓學(xué)生深刻感受“數(shù)不夠用了”.
效果:巧設(shè)問題背景,順利引入本節(jié)課題.
第三環(huán)節(jié):獲取新知
內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】
【議一議】: 已知 ,請(qǐng)問:① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?
【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?
釋2.滿足 的 為什么不是分?jǐn)?shù)?
【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)
【找一找】:在下列正方形網(wǎng)格中,先找出長(zhǎng)度為有理數(shù)的線段,再找出長(zhǎng)度不是有理數(shù)的線段
目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過程,讓學(xué)生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣
效果:學(xué)生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.
第四環(huán)節(jié):應(yīng)用與鞏固
內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】
【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:
1.長(zhǎng)度是有理數(shù)的線段
2.長(zhǎng)度不是有理數(shù)的線段
【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個(gè)三角形 (右1)
2.三邊長(zhǎng)都是有理數(shù)
2.只有兩邊長(zhǎng)是有理數(shù)
3.只有一邊長(zhǎng)是有理數(shù)
4.三邊長(zhǎng)都不是有理數(shù)
【仿一仿】:例:在數(shù)軸上表示滿足 的
解: (右2)
仿:在數(shù)軸上表示滿足 的
【賽一賽】:右3是由五個(gè)單位正方形組成的紙片,請(qǐng)你把
它剪成三塊,然后拼成一個(gè)正方形,你會(huì)嗎?試試看! (右3)
目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上
效果:加深了對(duì)“新知”的理解,鞏固了本課所學(xué)知識(shí).
第五環(huán)節(jié):課堂小結(jié)
內(nèi)容:
1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請(qǐng)問你有什么收獲與體會(huì)?
2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個(gè)嗎?
3.除了本課所認(rèn)識(shí)的非有理數(shù)的數(shù)以外,你還能找到嗎?
目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.
效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會(huì)進(jìn)行概括總結(jié).
第六環(huán)節(jié):布置作業(yè)
習(xí)題2.1
六、教學(xué)設(shè)計(jì)反思
。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動(dòng)力
大量事實(shí)都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動(dòng)的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.
。ǘ┗橄鬄榫唧w
常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動(dòng)開啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.
。ㄈ⿵(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)
既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.
八年級(jí)數(shù)學(xué)上冊(cè)教案6
一、創(chuàng)設(shè)情景,明確目標(biāo)
多媒體展示:內(nèi)角三兄弟之爭(zhēng)
在一個(gè)直角三角形里住著三個(gè)內(nèi)角,平時(shí),它們?nèi)值芊浅F(tuán)結(jié).可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個(gè)家就再也圍不起來了……”“為什么?”老二很納悶.同學(xué)們,你們知道其中的道理嗎?
二、自主學(xué)習(xí),指向目標(biāo)
學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書》相應(yīng)部分.
三、合作探究,達(dá)成目標(biāo)
三角形的內(nèi)角和
活動(dòng)一:見教材P11“探究”.
展示點(diǎn)評(píng):從探究的操作中,你能發(fā)現(xiàn)證明的思路嗎?圖中的直線L與△ABC的邊BC有什么關(guān)系?你能想出證明“三角形內(nèi)角和的方法”嗎?證明命題的步驟是什么?證明三角形的內(nèi)角和定理.
小組討論:有沒有不同的證明方法?
反思小結(jié):證明是由題設(shè)出發(fā),經(jīng)過一步步的推理,最后推出結(jié)論正確的過程.三角形三個(gè)內(nèi)角的.和等于180°.
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分
三角形內(nèi)角和定理的應(yīng)用
活動(dòng)二:見教材P12例1
展示點(diǎn)評(píng):題中所求的角是哪個(gè)三角形的一個(gè)內(nèi)角嗎?你能想出幾種解法?
小組討論:三角形的內(nèi)角和在解題時(shí),如何靈活應(yīng)用?
反思小結(jié):當(dāng)三角形中已知兩角的讀數(shù)時(shí),可直接用內(nèi)角和定理求第三個(gè)內(nèi)角;當(dāng)三角形中未直接給出兩內(nèi)角的度數(shù)時(shí),可根據(jù)它們之間的關(guān)系列方程解決.
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分
四、總結(jié)梳理,內(nèi)化目標(biāo)
1.本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí)是:三角形的內(nèi)角和是180°.
2.三角形內(nèi)角和定理的證明思路是什么?
3.數(shù)學(xué)思想是轉(zhuǎn)化、數(shù)形結(jié)合.
《三角形綜合應(yīng)用》精講精練
1. 現(xiàn)有3 cm,4 cm,7 cm,9 cm長(zhǎng)的四根木棒,任取其中三根組成一個(gè)三角形,那么可以組成的三角形的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
2. 如圖,用四個(gè)螺絲將四條不可彎曲的木條圍成一個(gè)木框,不計(jì)螺絲大小,其中相鄰兩螺絲的距離依次為2,3,4,6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時(shí)不破壞此木框,則任兩螺絲之間的距離最大值是( )
A.5 B.6 C.7 D.10
3.下列五種說法:①三角形的三個(gè)內(nèi)角中至少有兩個(gè)銳角;
、谌切蔚娜齻(gè)內(nèi)角中至少有一個(gè)鈍角;③一個(gè)三角形中,至少有一個(gè)角不小于60°;④鈍角三角形中,任意兩個(gè)內(nèi)角的和必大于90°;⑤直角三角形中兩銳角互余.其中正確的說法有________(填序號(hào)).
《11.2與三角形有關(guān)的角》同步測(cè)試
4.(1)如圖①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,∠ACD與∠B有什么關(guān)系?為什么?
(2)如圖②,在Rt△ABC中,∠C=90°,D,E分別在AC,AB上,且∠ADE=∠B,判斷△ADE的形狀.為什么?
(3)如圖③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,點(diǎn)C,B,E在同一直線上,∠A與∠D有什么關(guān)系?為什么?
八年級(jí)數(shù)學(xué)上冊(cè)教案7
一、創(chuàng)設(shè)情景,明確目標(biāo)
投影:金字塔,斜拉大橋,塔吊,自行車等,讓學(xué)生感受生活中處處有三角形的身影,我們研究的“三角形”這個(gè)課題來源于實(shí)際生活之中。
請(qǐng)說一說你已經(jīng)學(xué)習(xí)了三角形的哪些知識(shí)?
二、自主學(xué)習(xí),指向目標(biāo)
1、自學(xué)教材第1至3頁。
2、學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書》相應(yīng)部分。
三、合作探究,達(dá)成目標(biāo)
三角形的概念表示方法及分類
活動(dòng)一:閱讀教材第1至2頁內(nèi)容,并思考以下問題:
。1)具有什么特征的圖形叫三角形?(不在同一直線上的三條線段,首尾順次相接所組成的圖形)
。2)三角形有幾條邊?有幾個(gè)內(nèi)角?有幾個(gè)頂點(diǎn)?(3,3,3)
。3)三角形ABC用符號(hào)如何表示?三角形ABC的邊AB、AC和BC怎樣用小寫字母分別表示?(a,b,c)
。4)三角形按邊分可以分成幾類?按角分呢?
展示點(diǎn)評(píng):學(xué)生結(jié)合圖形分別回答,師生共同點(diǎn)評(píng)。
小組討論:三角形的概念,如何用符號(hào)表示及分類?
反思小結(jié):三角形的圖形特征,有三條邊,三個(gè)內(nèi)角,三個(gè)頂點(diǎn),邊可以用兩個(gè)大寫字母表示,也可以用一個(gè)小寫字母表示。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
三角形的三邊關(guān)系
活動(dòng)二:畫出一個(gè)△ABC,假設(shè)有一只小蟲要從B出發(fā),沿三角形的邊爬到C,它有幾種路線可以選擇?各條路線的長(zhǎng)有什么數(shù)量關(guān)系?請(qǐng)說明你結(jié)論的正確性。
展示點(diǎn)評(píng):(1)小蟲從B出發(fā)沿三角形的邊爬到C如下幾條線段。
a、從xxBxx鯻xCxx
b、從xxBxx鯻xAxx鯻xCxx
從B沿邊BC到C的路線長(zhǎng)為xxBCxx。
從B沿邊BA到A,從A沿C到C的路線長(zhǎng)為xxAB+ACxx。
經(jīng)過測(cè)量可以說xxAB+ACxx>xxBCxx,可以說這兩條路線的長(zhǎng)是xx不相等xx的
小組討論:在同一個(gè)三角形中,任意兩邊之和與第三邊有什么關(guān)系?任意兩邊之差與第三邊有什么關(guān)系?三角形的三邊有怎么樣的不等關(guān)系?
反思小結(jié):三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分
三角形有關(guān)知識(shí)的運(yùn)用
活動(dòng)三:見教材P3例題
小組討論:等腰三角形中有幾個(gè)不同的邊長(zhǎng)?第(2)問中的長(zhǎng)4 cm沒有明確是腰還是底時(shí)應(yīng)怎么處理?
展示點(diǎn)評(píng):等腰三角形的底和腰的長(zhǎng)度,不確定時(shí),應(yīng)分情況予以討論。
反思小結(jié):當(dāng)題目中的條件不明確時(shí)要分類討論。所有的三角形必須要滿足三邊關(guān)系定理。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分
四、總結(jié)梳理,內(nèi)化目標(biāo)
1、概念:三角形,內(nèi)角,邊,頂點(diǎn)
2、符號(hào)語言。
3、三邊關(guān)系。
4、角形的分類。
五、達(dá)標(biāo)檢測(cè),反思目標(biāo)
1、現(xiàn)有兩根木棒,它們的長(zhǎng)度分別為20 cm和30 cm,若不改變木棒的長(zhǎng)度,要釘成一個(gè)三角形木架,應(yīng)在下列四根木棒中選。˙)
A、 cm的木棒B。20 cm的木棒C。50 cm的木棒D。60 cm的木棒
2、已知等腰三角形的兩邊長(zhǎng)分別為3和6,則它的周長(zhǎng)為(C)
A、9 B、12 C、15 D、12或15
3、已知三角形的三邊長(zhǎng)為連續(xù)整數(shù),且周長(zhǎng)為12 cm,則它的最短邊長(zhǎng)為(B)
A、2 cm B、3 cm C、4 cm D、5 cm
4、若五條線段的'長(zhǎng)分別是1 cm,2 cm,3 cm,4 cm,5 cm,則以其中三條線段為邊可構(gòu)成xx3xx個(gè)三角形。若等腰三角形的兩邊長(zhǎng)分別為3和7,則它的周長(zhǎng)為xx17xx;若等腰三角形的兩邊長(zhǎng)分別是3和4,則它的周長(zhǎng)為xx10或11xx。
5、如果以5 cm為等腰三角形的一邊,另一邊為10 cm,則它的周長(zhǎng)為xx25xcmxx。
6、工人師傅用35 cm長(zhǎng)的鐵絲圍成一個(gè)等腰三角形鐵架。
。1)若腰長(zhǎng)是底邊長(zhǎng)的3倍,那么各邊的長(zhǎng)分別是多少?
。2)能圍成有一邊長(zhǎng)為7 cm的等腰三角形嗎?為什么?
《11。1。1三角形的邊》同步練習(xí)題(含答案)
2、四條線段的長(zhǎng)度分別為4,6,8,10,則可以組成三角形的個(gè)數(shù)為()
A、4 B、3 C、2 D、1
答案B選出三條線段的所有組合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能組成三角形。故選B。
3、已知等腰三角形的一邊長(zhǎng)為3 cm,且它的周長(zhǎng)為12 cm,則它的底邊長(zhǎng)為()
A、3 cm B6 、cm C、9 cm D、3 cm或6 cm
答案A當(dāng)3 cm是等腰三角形的腰長(zhǎng)時(shí),底邊長(zhǎng)=12—3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能構(gòu)成三角形,∴此種情況不存在;當(dāng)3 cm是等腰三角形的底邊長(zhǎng)時(shí),腰長(zhǎng)= =4。5(cm),此時(shí)能組成三角形!嗟走呴L(zhǎng)為3 cm,故選A。
《11.1與三角形有關(guān)的線段》同步測(cè)試(含答案解析)
2、一個(gè)三角形3條邊長(zhǎng)分別為x cm、(x+1)cm、(x+2)cm,它的周長(zhǎng)不超過39 cm,則x的取值范圍是xx。
3、一個(gè)等腰三角形的周長(zhǎng)為9,三條邊長(zhǎng)都為整數(shù),則等腰三角形的腰長(zhǎng)為xxx。
4、已知a,b,c是三角形的三邊長(zhǎng)。
。1)化簡(jiǎn):|b+c—a|+|b—c—a|—|c—a—b|—|a—b+c|;
。2)在(1)的條件下,若a,b,c滿足a+b=11,b+c=9,a+c=10,求這個(gè)式子的值。
八年級(jí)數(shù)學(xué)上冊(cè)教案8
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。
2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。
重點(diǎn)與難點(diǎn):
重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。
難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。
疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖
教具學(xué)具準(zhǔn)備:
提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動(dòng)畫演示。
教學(xué)過程設(shè)計(jì):
1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)
明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過平移形成。
2、課本
1 欣賞課本75頁圖3—24的圖案,并分析這個(gè)圖案形成過程。
評(píng)注:圖案是密鋪圖案的代表,旨在通過對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。
評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對(duì)稱變換得到左上圖和右下圖。
(二)課內(nèi)練習(xí)
(1) 以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的.圖案,并在全班交流。
(2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說明自己的設(shè)計(jì)意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。
(四)課時(shí)小結(jié)
本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。
通過今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)
八年級(jí)數(shù)學(xué)上冊(cè)教案(五)延伸拓展
進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。
八年級(jí)數(shù)學(xué)上冊(cè)教案9
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識(shí)遷移】
2.計(jì)算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點(diǎn)撥】根據(jù)完全平方式的`定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.
三、隨堂練習(xí),鞏固深化
課本P170練習(xí)第1、2題.
【探研時(shí)空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/p>
由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運(yùn)用公式因式分解時(shí),要注意:
(1)每個(gè)公式的形式與特點(diǎn),通過對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.
五、布置作業(yè),專題突破
八年級(jí)數(shù)學(xué)上冊(cè)教案10
一.教學(xué)目標(biāo):
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。
二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式
3.難點(diǎn)的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。
(2)波動(dòng)性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的'方法?梢援嬚劬圖方法來反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋,波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
三.例習(xí)題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計(jì)算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫折線法。
(4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。
2.教材P154例1的設(shè)計(jì)意圖:
(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):
1.題目中“整齊”的含義是什么?說明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。
3.方差怎樣去體現(xiàn)波動(dòng)大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。
六.隨堂練習(xí):
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?
(2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?
2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭荆l的成績(jī)比較穩(wěn)定?為什么?
測(cè)試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強(qiáng)10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績(jī)比金志強(qiáng)的成績(jī)要穩(wěn)定。
七.課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
4.小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級(jí)數(shù)學(xué)上冊(cè)教案11
11.1 與三角形有關(guān)的線段
11.1.1 三角形的邊
1.理解三角形的概念,認(rèn)識(shí)三角形的頂點(diǎn)、邊、角,會(huì)數(shù)三角形的個(gè)數(shù).(重點(diǎn))
2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點(diǎn))
3.三角形在實(shí)際生活中的應(yīng)用.(難點(diǎn))
一、情境導(dǎo)入
出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會(huì)生活中處處有數(shù)學(xué).
教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.
問:你能不能給三角形下一個(gè)完整的定義?
二、合作探究
探究點(diǎn)一:三角形的概念
圖中的銳角三角形有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
解析:(1)以A為頂點(diǎn)的銳角三角形有△ABC、△ADC共2個(gè);(2)以E為頂點(diǎn)的銳角三角形有△EDC共1個(gè).所以圖中銳角三角形的'個(gè)數(shù)有2+1=3(個(gè)).故選B.
方法總結(jié):數(shù)三角形的個(gè)數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個(gè)點(diǎn),那么就有n(n-1)2條線段,也可以與線段外的一點(diǎn)組成n(n-1)2個(gè)三角形.
探究點(diǎn)二:三角形的三邊關(guān)系
【類型一】 判定三條線段能否組成三角形
以下列各組線段為邊,能組成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:選項(xiàng)A中2+3=5,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)B中5+6>10,能組成三角形,故此選項(xiàng)正確;選項(xiàng)C中1+1<3,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)D中3+4<9,不能組成三角形,故此選項(xiàng)錯(cuò)誤.故選B.
方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長(zhǎng)度之和大于第三條線段的長(zhǎng)度即可.
【類型二】 判斷三角形邊的取值范圍
一個(gè)三角形的三邊長(zhǎng)分別為4,7,x,那么x的取值范圍是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三邊長(zhǎng)分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.
方法總結(jié):判斷三角形邊的取值范圍要同時(shí)運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時(shí)還要結(jié)合不等式的知識(shí)進(jìn)行解決.
【類型三】 等腰三角形的三邊關(guān)系
已知一個(gè)等腰三角形的兩邊長(zhǎng)分別為4和9,求這個(gè)三角形的周長(zhǎng).
解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長(zhǎng)的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.
解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長(zhǎng)是4+9+9=22.
方法總結(jié):在求三角形的邊長(zhǎng)時(shí),要注意利用三角形的三邊關(guān)系驗(yàn)證所求出的邊長(zhǎng)能否組成三角形.
【類型四】 三角形三邊關(guān)系與絕對(duì)值的綜合
若a,b,c是△ABC的三邊長(zhǎng),化簡(jiǎn)|a-b-c|+|b-c-a|+|c+a-b|.
解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對(duì)值里的式子的正負(fù),然后去絕對(duì)值符號(hào)進(jìn)行計(jì)算即可.
解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).
三、板書設(shè)計(jì)
三角形的邊
1.三角形的概念:
由不在同一直線上的三條線段首尾順次相接所組成的圖形.
2.三角形的三邊關(guān)系:
兩邊之和大于第三邊,兩邊之差小于第三邊.
本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問題的過程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力.
八年級(jí)數(shù)學(xué)上冊(cè)教案12
教學(xué)目標(biāo):
理解同底數(shù)冪的乘法法則,運(yùn)用同底數(shù)冪的乘法法則解決一些實(shí)際問題.通過“同底數(shù)冪的乘法法則”的推導(dǎo)和應(yīng)用,使學(xué)生初步理解特殊到般再到特殊的認(rèn)知規(guī)律.
教學(xué)重點(diǎn)與難點(diǎn):
正確理解同底數(shù)冪的乘法法則以及適用范圍.
教學(xué)過程:
一、回顧冪的相關(guān)知識(shí)
an的意義:an表示n個(gè)a相乘,我們把這種運(yùn)算叫做乘方.乘方的結(jié)果叫冪;a叫做底數(shù),n是指數(shù).
二、創(chuàng)設(shè)情境,感覺新知
問題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?
學(xué)生分析,總結(jié)結(jié)果
1012×103=()×(10×10×10)==1015.
通過觀察可以發(fā)現(xiàn)1012、103這兩個(gè)因數(shù)是同底數(shù)冪的形式,所以我們把像1012×103的運(yùn)算叫做同底數(shù)冪的.乘法.根據(jù)實(shí)際需要,我們有必要研究和學(xué)習(xí)這樣的運(yùn)算──同底數(shù)冪的乘法.
學(xué)生動(dòng)手:
計(jì)算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整數(shù))
教師引導(dǎo)學(xué)生注意觀察計(jì)算前后底數(shù)和指數(shù)的關(guān)系,并能用自己的語言描述.
得到結(jié)論:
。1)特點(diǎn):這三個(gè)式子都是底數(shù)相同的冪相乘.相乘結(jié)果的底數(shù)與原來底數(shù)相同,指數(shù)是原來兩個(gè)冪的指數(shù)的和.
。2)一般性結(jié)論:am·an表示同底數(shù)冪的乘法.根據(jù)冪的意義可得:
am·an=()·()=()=am+n
am·an=am+n(m、n都是正整數(shù)),即為:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加
三、小結(jié):
同底數(shù)冪的乘法的運(yùn)算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
注意兩點(diǎn):
一是必須是同底數(shù)冪的乘法才能運(yùn)用這個(gè)性質(zhì);
二是運(yùn)用這個(gè)性質(zhì)計(jì)算時(shí)一定是底數(shù)不變,指數(shù)相加,即am·an=am+n
八年級(jí)數(shù)學(xué)上冊(cè)教案13
教學(xué)目標(biāo):
。1)通過觀察操作,認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn),掌握軸對(duì)稱圖形的概念。
。2)能準(zhǔn)確判斷哪些事物是軸對(duì)稱圖形。
。3)能找出并畫出軸對(duì)稱圖形的對(duì)稱軸。
。4)通過實(shí)驗(yàn),培養(yǎng)學(xué)生的抽象思維和空間想象能力。
。5)結(jié)合教材和聯(lián)系生活實(shí)際培養(yǎng)學(xué)生的學(xué)習(xí)興趣和熱愛生活的情感。
教學(xué)重點(diǎn):
。1)認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn),建立軸對(duì)稱圖形的概念;
。2)準(zhǔn)確判斷生活中哪些事物是軸對(duì)稱圖形。
教學(xué)難點(diǎn):
根據(jù)本班學(xué)生學(xué)習(xí)的實(shí)際情況,本節(jié)課教學(xué)的難點(diǎn)是找軸對(duì)稱圖形的對(duì)稱軸。
教學(xué)過程:
一、認(rèn)識(shí)對(duì)稱物體
1、出示物體:今天秦老師給大家?guī)砹艘恍┪矬w,這是我們學(xué)校的同學(xué)參加數(shù)學(xué)競(jìng)賽獲得的獎(jiǎng)杯。這時(shí)一架轟炸戰(zhàn)斗機(jī)。這是海獅頂球。
2、請(qǐng)同學(xué)們仔細(xì)觀察這些物體,想一想它們的外形有什么共同的特點(diǎn)。(可能的回答:對(duì)稱)
。ǖ糠謱W(xué)生這時(shí)并不真正理解何為對(duì)稱)
追問:對(duì)稱?你是怎樣理解對(duì)稱的呢?
。ǹ赡艿幕卮穑簝蛇吺且粯拥模
像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對(duì)稱的。(板書:對(duì)稱)像這樣對(duì)稱的物體,在我們的生活中你看到過嗎?誰來說說看?
。ǹ赡苷_的回答:蝴蝶、蜻蜓……)
。ǹ赡苠e(cuò)誤的回答:剪刀)
若有錯(cuò)誤答案則如此處理。追問:剪刀是不是對(duì)稱的?學(xué)生產(chǎn)生分歧,有說是,有說不是。剪刀兩邊不是完全一樣的,所以它不對(duì)稱。但是沿著輪廓把它畫在紙上,是一個(gè)對(duì)稱的。
二、認(rèn)識(shí)對(duì)稱圖形
1、這些對(duì)稱的物體,我們把它畫在紙上,就得到這樣一些平面圖形。(出示圖片)這些圖形還是對(duì)稱的嗎?(是對(duì)稱的)
同學(xué)們真聰明,一眼就能看出這些圖形都是對(duì)稱的。那么像這樣的圖形,我們就把它們叫做——(生齊說:對(duì)稱圖形)
。◣熢凇皩(duì)稱”后接著板書:圖形)
2、是不是所有的圖形都是對(duì)稱的?它們又是怎樣對(duì)稱的?我們又怎樣證明它們是不是對(duì)稱圖形?這就是我們這節(jié)課要研究的問題。為了研究這些問題,老師還帶來了一些平面圖形,你們看——
。◣熢诤诎迳腺N出圖形)
邊貼邊說:汽車圖形、鑰匙圖形、桃子圖形、蝴蝶圖形、青蛙圖形、豎琴圖形、香港區(qū)徽?qǐng)D形。
這些圖形都是對(duì)稱的嗎?(不是)
3、你們能給它們分分類嗎?(能)誰愿意上來分一分?
你準(zhǔn)備怎么分類?(分成兩類:一類是對(duì)稱圖形,一類是不對(duì)稱圖形)
問全班同學(xué):你們同意嗎?(同意)
你們?cè)趺粗肋@些圖形就是對(duì)稱圖形?有什么辦法來證明嗎?(對(duì)折)
好,我們用這個(gè)辦法試一下。誰愿意上來折給大家看的?自己上來,選擇一個(gè)喜歡的圖形折給大家看。
4、圖形對(duì)折后你發(fā)現(xiàn)了什么?誰先說?(可能的回答:對(duì)折后兩邊一樣或?qū)φ酆髢蛇呏丿B)
你們所說的兩邊一樣、兩邊重疊,也就是說對(duì)折后兩邊重合了。
。◣煱鍟褐睾希ㄈ粲姓f出完全重合則板書:完全重合)
請(qǐng)將對(duì)折后的對(duì)稱圖形貼到黑板上,謝謝。
師指不對(duì)稱圖形。同學(xué)們剛才我們通過把這些對(duì)稱圖形對(duì)折,發(fā)現(xiàn)對(duì)折后兩邊重合了,現(xiàn)在再請(qǐng)幾位同學(xué)上來折一折不對(duì)稱圖形,看看這次又有什么發(fā)現(xiàn)?還是自己上來。
折后你發(fā)現(xiàn)了什么?(可能的回答:沒有重合、對(duì)折后兩邊不一樣)它們有沒有重合?一點(diǎn)點(diǎn)重合都沒有嗎?
。ㄓ幸稽c(diǎn)重合)
拿一個(gè)對(duì)稱圖形和同學(xué)折過的不對(duì)稱圖形比較。這個(gè)圖形對(duì)折后重合了,這個(gè)也重合了,那這兩種重合有什么不一樣嗎?
(可能的回答:這個(gè)全部重合了,這個(gè)沒有)
這些對(duì)稱的圖形對(duì)折后全部重合了,也就是完全重合了!
。◣熢凇爸睾稀鼻鞍鍟和耆┒粚(duì)稱圖形只是部分重合。
好,謝謝你們,請(qǐng)將圖形放這(不對(duì)稱圖形下黑板)
大家的.表現(xiàn)非常出色,獎(jiǎng)勵(lì)一下我們自己,來拍拍手吧!
“一——二——停!”我們的兩只手掌現(xiàn)在是——
。ㄉR說:完全重合)
三、認(rèn)識(shí)對(duì)稱軸,對(duì)稱軸的畫法
同學(xué)們都很聰明,課前你們都準(zhǔn)備了彩紙、剪刀,如果請(qǐng)你用這些材料創(chuàng)作一個(gè)對(duì)稱圖形,行嗎?
1、請(qǐng)將你創(chuàng)作的對(duì)稱圖形,慢慢打開,問:你們發(fā)現(xiàn)了什么?
。ㄖ虚g有一條折痕)
大家把手中的對(duì)稱圖形舉起來,看看是不是每個(gè)對(duì)稱圖形中間——都有一條折痕。這些折痕的左右兩邊——(生齊說:完全重合)。
這條折痕所在的直線,有它獨(dú)有的名稱叫做“對(duì)稱軸”。
。ㄔ凇皩(duì)稱圖形”前板書:軸)
像這樣的圖形,我們就把它們叫做“軸對(duì)稱圖形”。
。◣熓种赴鍟,邊說邊把“對(duì)折——完全重合——軸對(duì)稱圖形”連起來)
現(xiàn)在大家知道了這個(gè)圖形是——軸對(duì)稱圖形。這個(gè)呢?這個(gè)呢?他們都是——軸對(duì)稱圖形。接下來請(qǐng)你看著自己創(chuàng)作的圖形說說。
誰來說說,怎樣的圖形是軸對(duì)稱圖形?
可以上來拿一個(gè)軸對(duì)稱圖形說。請(qǐng)學(xué)生用自己的語言說。
2、師拿一張軸對(duì)稱圖形,隨便折兩下。
這是一個(gè)軸對(duì)稱圖形嗎?是的。師隨便折兩下。
誰來說說這個(gè)軸對(duì)稱圖形的對(duì)稱軸是那條?
。ㄒ粭l都不是。)為什么?
只有對(duì)折后兩邊完全重合的折痕才是對(duì)稱軸。
請(qǐng)你來折出它的對(duì)稱軸。通常我們用點(diǎn)劃線表示對(duì)稱軸。
師示范。請(qǐng)你在所創(chuàng)作的軸對(duì)稱圖形上用點(diǎn)劃線表示出對(duì)稱軸。
四、平面圖形中的軸對(duì)稱圖形,及它們的對(duì)稱軸各有幾條。
1、對(duì)于軸對(duì)稱圖形,其實(shí)我們并不陌生,在我們認(rèn)識(shí)的一些平面圖形中應(yīng)該就有一些是軸對(duì)稱圖形。我們先回憶一下學(xué)習(xí)過的平面圖形有哪些?
。ǹ赡艿幕卮穑赫叫、長(zhǎng)方形、平行四邊形、圓形、梯形、三角形等等)(教師板書,適當(dāng)布局)
同學(xué)們說的是否正確呢?用什么辦法來證明?(對(duì)折)如果它是軸對(duì)稱圖形,那它有幾條對(duì)稱軸呢?
好,那我們就拿出課前準(zhǔn)備的平面圖形,用對(duì)折的方法來證明,注意如果它有對(duì)稱軸請(qǐng)你折出來。
結(jié)論出來了嗎?現(xiàn)在你的判斷和剛才還是一樣的嗎?
3、問:你想?yún)R報(bào)什么?學(xué)生匯報(bào)。教師機(jī)動(dòng)回答,回答語可有:
這位同學(xué)既能給出判斷結(jié)果,又能說出判斷的理由,非常好。
看來,僅靠經(jīng)驗(yàn)、觀察得出的結(jié)論有時(shí)并不準(zhǔn)確,還需要?jiǎng)邮謱?shí)驗(yàn)進(jìn)行驗(yàn)證。
能抓住軸對(duì)稱圖形的特征進(jìn)行分析,不錯(cuò)!
也許一般的平行四邊形不是軸對(duì)稱圖形,但有些特殊的平行四邊形卻是比如:長(zhǎng)方形和正方形。以此類推……
圓有無數(shù)條對(duì)稱軸。所有的圓都是軸對(duì)稱圖形。
討論平行四邊形、梯形、三角形時(shí),我們既要考慮一般的圖形,又要考慮特殊的圖形。但是關(guān)于圓形,我們卻無需考慮這么多,正如你所說的,所有的圓都是軸對(duì)稱圖形,不存在什么特殊的情況?磥恚瑪(shù)學(xué)學(xué)習(xí)中,具體的問題還得具體對(duì)待。
。ㄒ话闳切、一般梯形、直角梯形、一般平行四邊形不是軸對(duì)稱圖形,等腰三角形、等腰梯形、正三角形、長(zhǎng)方形、正方形和圓都是軸對(duì)稱圖形)等腰梯形(1條),正五邊形(5條),圓(無數(shù)條)
4、用測(cè)量的方法找對(duì)稱軸。
剛才,大家都用對(duì)折的方法找出了他們的對(duì)稱軸,但是如果老師請(qǐng)你在黑板面上找出對(duì)稱軸呢?
大家都有一張長(zhǎng)方形紙,假設(shè)它就是不能對(duì)折的黑板面,怎么畫出它的對(duì)稱軸?(我們可以用測(cè)量的方法,來找出對(duì)邊的中點(diǎn),連結(jié)中點(diǎn)。用同樣的方法,我們可以畫出另一條對(duì)稱軸。
現(xiàn)在請(qǐng)同學(xué)們打開書本,畫出書上長(zhǎng)方形的對(duì)稱軸。(小組內(nèi)交流檢查)
五、練習(xí)
1、學(xué)習(xí)了什么是軸對(duì)稱圖形,現(xiàn)在請(qǐng)?jiān)谀闵磉叺奈矬w上找出三個(gè)軸對(duì)稱圖形。(瓷磚面、電視機(jī)柜、衣服、國(guó)旗?、凳面、桌面)
問:國(guó)旗是軸對(duì)稱圖形嗎?
產(chǎn)生沖突。說明:不但要觀察外形,還要觀察里面的圖案。
2、判斷國(guó)旗是否是軸對(duì)稱圖形。
3、找阿拉伯?dāng)?shù)字中的軸對(duì)稱圖形
4、領(lǐng)略窗花的美麗,再從中找到創(chuàng)作的靈感,創(chuàng)作軸對(duì)稱圖形。教師可出示一些指導(dǎo)性圖片。
選擇一些貼到黑板上,最后出示“美”字。
總結(jié):軸對(duì)稱圖形非常美麗,因此被廣泛的運(yùn)用于服裝、家具、交通、商標(biāo)等方面的設(shè)計(jì)中,希望大家能夠運(yùn)用今天的知識(shí),把我們的教室、把你的家以后把我們的祖國(guó)裝扮得更漂亮。
八年級(jí)數(shù)學(xué)上冊(cè)教案14
教學(xué)目標(biāo):
1、經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。
2、能按要求把所給出的圖形補(bǔ)成以某直線為軸的軸對(duì)稱圖形,能依據(jù)圖形的軸對(duì)稱關(guān)系設(shè)計(jì)軸對(duì)稱圖形。
教學(xué)重點(diǎn):本節(jié)課重點(diǎn)是掌握已知對(duì)稱軸L和一個(gè)點(diǎn),要畫出點(diǎn)A關(guān)于L的軸對(duì)稱點(diǎn)的畫法,在此基礎(chǔ)上掌握有關(guān)軸對(duì)稱圖形畫圖的操作技能,并能利用圖形之間的軸對(duì)稱關(guān)系來設(shè)計(jì)軸對(duì)稱圖形,掌握有關(guān)畫圖的技能及設(shè)計(jì)軸對(duì)稱圖形是本節(jié)課的難點(diǎn)。
教學(xué)方法:動(dòng)手實(shí)踐、討論。
教學(xué)工具:課件
教學(xué)過程:
一、 先復(fù)習(xí)軸對(duì)稱圖形的定義,以及軸對(duì)稱的相關(guān)的性質(zhì):
1.如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個(gè)圖形叫做________________,這條直線叫做_____________
2.軸對(duì)稱的三個(gè)重要性質(zhì)______________________________________________
_____________________________________________________________________
二、提出問題:
二、探索練習(xí):
1. 提出問題:
如圖:給出了一個(gè)圖案的一半,其中的虛線是這個(gè)圖案的對(duì)稱軸。
你能畫出這個(gè)圖案的另一半嗎?
吸引學(xué)生讓學(xué)生有一種解決難點(diǎn)的想法。
2.分析問題:
分析圖案:這個(gè)圖案是由重要六個(gè)點(diǎn)構(gòu)成的',要將這個(gè)圖案的另一半畫出來,根據(jù)軸對(duì)稱的性質(zhì)只要畫出這個(gè)圖案中六個(gè)點(diǎn)的對(duì)應(yīng)點(diǎn)即可
問題轉(zhuǎn)化成:已知對(duì)稱軸和一個(gè)點(diǎn)A,要畫出點(diǎn)A關(guān)于L的對(duì)應(yīng)點(diǎn) ,可采用如下方法:`
在學(xué)生掌握已知一個(gè)點(diǎn)畫對(duì)應(yīng)點(diǎn)的基礎(chǔ)上,解決上述給出的問題,使學(xué)生有一條較明確的思路。
三、對(duì)所學(xué)內(nèi)容進(jìn)行鞏固練習(xí):
1. 如圖,直線L是一個(gè)軸對(duì)稱圖形的對(duì)稱軸,畫出這個(gè)軸對(duì)稱圖形的另一半。
2. 試畫出與線段AB關(guān)于直線L的線段
3.如圖,已知 直線MN,畫出以MN為對(duì)稱軸 的軸對(duì)稱圖形
小 結(jié): 本節(jié)課學(xué)習(xí)了已知對(duì)稱軸L和一個(gè)點(diǎn)如何畫出它的對(duì)應(yīng)點(diǎn),以及如何補(bǔ)全圖形,并利用軸對(duì)稱的性質(zhì)知道如何設(shè)計(jì)軸對(duì)稱圖形。
教學(xué)后記:學(xué)生對(duì)這節(jié)課的內(nèi)容掌握比較好,但對(duì)于利用軸對(duì)稱的性質(zhì)來設(shè)計(jì)圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學(xué)生上課積極性較高
八年級(jí)數(shù)學(xué)上冊(cè)教案15
教學(xué)設(shè)計(jì)
1、知識(shí)技能:
(1)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算。
(2)使學(xué)生能利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算。
2、數(shù)學(xué)思考:在學(xué)習(xí)了二次根式乘法的.基礎(chǔ)上進(jìn)行總結(jié)對(duì)比,得出除法的運(yùn)算法則。
3、 解決問題:引導(dǎo)學(xué)生從特殊到一般總結(jié)歸納的方法以及類比的方法,解決數(shù)學(xué)問題。
4、情感態(tài)度:通過本節(jié)課的學(xué)習(xí)使學(xué)生認(rèn)識(shí)到事物之間是相互聯(lián)系的,相互作用的
同步練習(xí)含答案解析
【考點(diǎn)】最簡(jiǎn)二次根式。
【分析】判定一個(gè)二次根式是不是最簡(jiǎn)二次根式的方法,就是逐個(gè)檢查定義中的兩個(gè)條件(①被開方數(shù)不含分母;②被開方數(shù)不含能開得盡方的因數(shù)或因式)是否同時(shí)滿足,同時(shí)滿足的就是最簡(jiǎn)二次根式,否則就不是。
【解答】解:A、被開方數(shù)里含有能開得盡方的因數(shù)8,故本選項(xiàng)錯(cuò)誤;
B、符合最簡(jiǎn)二次根式的條件;故本選項(xiàng)正確;
B、,被開方數(shù)里含有能開得盡方的因式x2;故本選項(xiàng)錯(cuò)誤;
C、被開方數(shù)里含有分母;故本選項(xiàng)錯(cuò)誤。
D、被開方數(shù)里含有能開得盡方的因式a2;故本選項(xiàng)錯(cuò)誤;
故選;B。
【點(diǎn)評(píng)】本題主要考查了最簡(jiǎn)二次根式的定義,最簡(jiǎn)二次根式必須滿足兩個(gè)條件:
(1)被開方數(shù)不含分母;
(2)被開方數(shù)不含能開得盡方的因數(shù)或因式。
課時(shí)練習(xí)含答案
解答:選項(xiàng)A是二次根式乘法的運(yùn)算,選項(xiàng)C不符合二次根式的運(yùn)算條件,選項(xiàng)D中被開方數(shù)不能為負(fù),故A、C、D都是錯(cuò)誤的,唯有B符合二次根式除法運(yùn)算法則,故選B。
分析:正確運(yùn)用二次根式除法運(yùn)算法則進(jìn)行計(jì)算,并能辨析運(yùn)算的正誤,是本節(jié)的教學(xué)難點(diǎn),學(xué)生可以通過比較分析或正確計(jì)算加以判斷。
【八年級(jí)數(shù)學(xué)上冊(cè)教案】相關(guān)文章:
數(shù)學(xué)八年級(jí)上冊(cè)教案03-02
初中數(shù)學(xué)八年級(jí)上冊(cè)教案02-06
八年級(jí)上冊(cè)數(shù)學(xué)函數(shù)教案03-09
八年級(jí)上冊(cè)數(shù)學(xué)優(yōu)秀教案01-23
八年級(jí)上冊(cè)數(shù)學(xué)教案01-13
八年級(jí)數(shù)學(xué)上冊(cè)教案02-27
數(shù)學(xué)八年級(jí)上冊(cè)教案(15篇)03-02
數(shù)學(xué)八年級(jí)上冊(cè)教案15篇03-02
八年級(jí)數(shù)學(xué)上冊(cè)教案06-08
數(shù)學(xué)上冊(cè)教案01-15