欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

平行四邊形教案

時間:2023-05-27 11:03:29 教案 我要投稿

【熱門】平行四邊形教案三篇

  作為一位優(yōu)秀的人民教師,就有可能用到教案,教案有助于學生理解并掌握系統(tǒng)的知識。怎樣寫教案才更能起到其作用呢?以下是小編精心整理的平行四邊形教案3篇,希望對大家有所幫助。

【熱門】平行四邊形教案三篇

平行四邊形教案 篇1

  教學目標:

  1、在聯(lián)系生活實際和動手操作的過程中認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,認識平行四邊形的高。

  2、在活動中進一步積累認識圖形的學習經(jīng)驗,學會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能測量或畫出平行四邊形的高。

  3、感受圖形與生活的聯(lián)系,感受平面圖形的學習價值,進一步發(fā)展對空間與圖形的學習興趣。

  教學重點:進一步認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,會畫高。

  教學難點:引導(dǎo)學生發(fā)現(xiàn)平行四邊形的特征。

  教學準備:實物投影。

  教學過程:

  一、創(chuàng)設(shè)情境、導(dǎo)入新課。

  1、出示長方形,談話:老師手里問成的是什么圖形?

  學生:長方形

  教師移動成平行四邊形,談話:仔細看,現(xiàn)在圍成的是什么圖形?

  學生:平行四邊形

  揭題:今天我們進一步認識平行四邊形(揭題)

  [從學生熟悉的長方形漸變成平行四邊形,既關(guān)注學生的原認知,又符合學生的認知規(guī)律,同時為后面發(fā)現(xiàn)平行四邊形邊的特點和比較長方形、平行四邊形的異同點提供了鋪墊]

  2、教師談話:同學們在生活中見到過平行四邊形嗎?

  生1:我們校門口的移動門上有平行四邊形;

  生2:一種衣架是平行四邊形;

  生3:我家曬衣服的伸向外面的欄桿是平行四邊形的;

  生4:看,墻上那個圖上有平行四邊形;

  談話:只要你善于觀察生活,其實生活中經(jīng)常能看到平行四邊形。出示掛圖(電動移門、樓梯扶欄、籬笆),你能從中找出平行四邊形嗎?

  學生上臺指。

  [通過讓學生在生活實踐中找平行四邊形,比劃出平行四邊形的樣子,挖掘?qū)W生對平行四邊形的潛在表象認識,建立初步的感性表象。]

  二、實踐操作、探究特點。

  1、談話:同學們都認識了平行四邊形,閉上眼睛在小腦袋里想一想平形四邊形是什么樣子的?好,腦子里有平行四邊形樣子了嗎?如果老師讓你做一個平行四邊形,你準備怎么做?

  學生思考。

  2、學生用手頭材料做,做完后交流:我是怎么做平行四邊形的?教師巡視指導(dǎo)。

  3、談話:誰愿意上臺來展示自己是怎么做的?

  生1:我用釘子板圍;

  生2:我用小棒擺的;

  生3:我用方格圖上畫;

  生4:我是直接折的;

  生5:我是用剪刀剪的;

  4、談話:同學們想出的辦法真多,請同學們觀察一下自己面前的平行四邊形,它的邊有什么共同特點呢?

  小組交流:有什么發(fā)現(xiàn)?

  5、交流匯報:

  生1:我們小組覺得上下兩條邊可能平行;左右兩條邊可能平行。 (師板書:互相平行)

  師:你是怎么發(fā)現(xiàn)的?

  生1:我是看出來的,上下兩條邊延長后不相交;

  師:其他小組發(fā)現(xiàn)這個特點了嗎?你有辦法證明嗎?

  生2:我們的平行四邊形上下兩條邊延長后也不相交,我可以用畫平行線方法證明,左右也一樣;

  師明確:上下兩條邊稱為一組對邊,左右一組對邊,可以稱兩組對邊。(板書:兩組對邊)

  生3:我們可以用三角尺平移的辦法證明對邊是平行的。

  小組討論后提問并板書:兩組對邊互相平行。

  生3:我們小組發(fā)現(xiàn)兩組對邊都是相等的?

  師:你們聽明白他的意思了嗎?

  生4:就是上下兩條邊相等,左右兩條邊相等。

  師規(guī)范語言:你指的是兩組對邊分別相等,是嗎?(板書)

  談話:其他小組發(fā)現(xiàn)這個特點了嗎?你有辦法證明嗎?

  生5:上下兩個小棒長度相等,左右長度也相等;

  生6:我上下拉出的都是3格,左右是2格,都是相等;

  小結(jié):通過以上研究,我們已經(jīng)知道了平行四邊形的特點:兩組對邊分別平行且相等。

  5、教師在釘子板上圍想想做做1,判斷:哪些圖形是平行四邊形,為什么。

  生1:1、3、4是平行四邊形,因為他們符合平行四邊形特點兩組對邊分別平行且 相等。

  生2:2不是,因為它上下對邊平行不相等,左右對邊相等又不平行,所以不是平行四邊形。

  生3:2是梯形,所以不是平行四邊形。

  [學生經(jīng)歷制作平行四邊形的過程,討論、探究、發(fā)現(xiàn)平行四邊形邊的特點,學生交流自己的驗證方法,并用發(fā)現(xiàn)的特點去判斷圖形是否平行四邊形。經(jīng)歷制做研究發(fā)現(xiàn)應(yīng)用的過程,符合學生的認識規(guī)律。]

  三、認識高、底。

  1、談話:出示一張平行四邊形的圖,介紹:這是一個平行四邊形,上下對邊是一組平行線,你能量出兩條平行線之間的距離嗎?應(yīng)該怎么量?把你量的線段畫出來。

  學生自己嘗試后交流。教師指導(dǎo)明確平行線之間的垂直線段就是平行線之間的距離。

  2、老師剛才發(fā)現(xiàn),大家畫的垂直線段位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數(shù)條。)

  老師示范畫一組的垂直線段,說明:在平行四邊形里,一組對邊之間的垂直線段就是平行四邊形的高,而對邊就是底。

  3、學生自主看書上P44頁,說一說:什么是平行四邊形的高?什么是底?

  [由復(fù)習平行線之間距離入手,讓學生動手量、畫,然后明確平形四邊形高、底的含義,注重鏈接知識的最近發(fā)展區(qū),符合學生的認知規(guī)律]

  4、師出示實物平行四邊形,指一指兩組底邊上的高。

  5、找出底邊上的高:(圖略)

  6、做書上試一試,量出底和高分別是多少?

  (1)先指一指高垂直于哪條邊;(2)量出每個平行四邊形的底和高各是多少厘米。

  7、想想做做5,先指一指平行四邊形的'底,再畫出這條底邊上的高,注意畫上直角 標記。如果有錯誤,讓學生說說錯在哪里。

  [平行四邊形的高、底的認識是本課教學的難點,通過量平行線間的距離,使學生逐步認識平行四邊形的高和底。在扎實認識了高和底的基礎(chǔ)上,讓學生經(jīng)歷指高、找高、量高、畫高的過程,并通過變式,加深對知識點的掌握。]

  四、練習提高。

  1、談話:課一開始,老師將長方形一拉變成平行四邊形,現(xiàn)在老師再輕輕一移又變成了長方形,同學們觀察一下,長方形和平行四邊形哪里變了,哪里沒變,討論一下它們有什么相同點和不同點呢?

  學生小組交流,集體匯報。

  生1:相同點是它們的對邊都是平行且相等;

  生2 :不同點是長方形的角都是直角,而平行四邊形的角不是直角;

  生3:平行四邊形是長方形變形后產(chǎn)生的;

  2、教師:平行四邊形不改變邊長的情況下可以改變成不同形狀的平行四邊形,這就是平行四邊形的不穩(wěn)定性。請同學看書上P45頁你知道嗎?

  提問:說一說,生活中平行四邊形的這種特點在哪些地方有應(yīng)用?

  生1:有種可以彈的那種拳擊套;

  生2:曬衣服的衣架;

  生3:捕魚的網(wǎng);

  五、實踐游戲:

  1、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個平行四邊形,在小組里交流是怎樣拼的。

  2、想想做做3,用七巧板中的3塊拼成一個平行四邊形。

  出示,你能移動其中的一塊將它改拼成長方形嗎?

  3、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的長方形桌面,該從 哪里鋸開呢?找一張平行四邊形紙試一試。

  [練習設(shè)計既富有情趣,又讓學生在活動中體驗到所學平行四邊形知識的價值,再次感悟到數(shù)學知識與現(xiàn)實生活的密切聯(lián)系。]

  六、全課小結(jié)

  今天我們重點研究了哪種平面圖形?它有什么特點?回想一下,我們通過哪些活動進行研究的?

  [小結(jié)簡明扼要,既突出本節(jié)課的知識重點,又提升了學生的認知策略。]

  教學反思:

  一、 激發(fā)原認知關(guān)注學生知識儲備。

  用發(fā)展的眼光來設(shè)計學習活動,讓學生在探究中親歷知識形成的過程,遠比讓學生直接但卻被動地獲取現(xiàn)成知識結(jié)論要更加具有深遠的意義和影響,學生的觀察、猜想、探索和創(chuàng)新等其他各方面能力都能得到有效地開發(fā)和鍛煉。紙上得來終覺淺。在體驗中自身感悟的東西理解深刻、印象久遠。對平行四邊形的特征研究,我本著讓學生親歷知識的形成過程的方法,讓學生依據(jù)探究內(nèi)容自己有序探究,自己量一量、比一比、想一想,從而得出平行四邊形的特征,學生自然也得到了有效地學習。

  二、重視過程把探究機會讓給學生。

  《課標》在基本理念中指出:數(shù)學教學活動,必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)上,為學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握數(shù)學知識。本課正是實踐這種理念的一個典范,如我在教學中提供長短不一的塑料棒和釘字板,讓學生根據(jù)印象中的平行四邊形制作平行四邊形,自主選擇學具圍成各種各樣的平行四邊形,其間學生既能采用最簡單的4根塑料棒來圍成,還有用釘字板圍。操作的成功不但讓學生對平行四邊形原有認知表現(xiàn)外顯,更讓學生為下面進一步觀察平行四邊形邊特點提供了素材,最重要的是提升學生靈活應(yīng)用數(shù)學解決實際問題的策略與能力,并從中得到成功的體驗,樹立學習的信心。

平行四邊形教案 篇2

  教學目標

  1、知識目標

 。1)使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。

  (2)掌握平行四邊形的性質(zhì)定理1、2,并能運用這些知識進行有關(guān)的證明或計算.

  2、能力目標

 。1)通過啟發(fā)、引導(dǎo),讓學生猜想結(jié)論,培養(yǎng)學生的觀察能力和猜想能力。

 。2)驗證猜想結(jié)論,培養(yǎng)學生的論證和邏輯思維能力。

 。3)通過開放式教學,培養(yǎng)學生的創(chuàng)新意識和實踐能力。

  3、非智力目標

  滲透從具體到抽象、化未知為已知的數(shù)學思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點.

  教學重點、難點

  重點:平行四邊形的概念及其性質(zhì).

  難點:正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。

  平行四邊形的概念及性質(zhì)的靈活運用

  教學方法:講解、分析、轉(zhuǎn)化

  教學過程設(shè)計

  一、利用分類、特殊化的方法引出平行四邊形的概念

  1.復(fù)習四邊形的知識.

 。1)引導(dǎo)學生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質(zhì),強調(diào)對角線的作用:將四邊形分割化歸為三角形來研究.

 。2)將四邊形的邊角按位置關(guān)系分為兩類:

  教學時應(yīng)結(jié)合圖形,讓學生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區(qū)別.

  2.教師提問:四邊形中的兩組對邊按位置關(guān)系分為幾種情況?

  引導(dǎo)學生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.

  3.對比引出平行四邊形的概念.

  (1)引導(dǎo)學生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.

 。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時它還具有一般四邊形不具備的特殊性質(zhì)(個性).

 。3)強調(diào)定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質(zhì).

  (4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.

 、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)

 、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)

  練習1(投影)

  如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.

  二、探索平行四邊形的性質(zhì)并證明

  1.探索性質(zhì).

  啟發(fā)學生從平行四邊形的主要元素——邊、角、對角線的位置關(guān)系及數(shù)量關(guān)系入手,來觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:

 。3)對角線

 、輰蔷互相平分(性質(zhì)定理3)

  教師注意解釋并強調(diào)對角線互相平分的含義及表示方法.

  2.利用化歸的方法對性質(zhì)逐一進行證明.

 。1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.

 。2)啟發(fā)學生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質(zhì)②,⑤.

 。3)寫出證明過程.

  3.關(guān)于“兩條平行線間的平行線段和距離”的教學.

  (1)利用性質(zhì)定理2

  導(dǎo)出推論:夾在兩條平行線間的平行線段相等.

 、偬釂枺涸趫D4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學生根據(jù)平行四邊形的定義和性質(zhì)進行證明.

  ②引導(dǎo)學生用語言簡練地敘述圖4-14所反映的幾何命題,并強調(diào)它的作用.證題時可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.

 、蹚娬{(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習.

  練習2

 。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.

 。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習區(qū)別三個距離.

  練習3

  在圖4-15(d)中,

 、冱cA與點C的距離是線段__的長;

 、邳cA到直線l2的距離是線段__的長;

 、蹆蓷l平行線l1與l2的距離是線段__或__的長;

 、苡赏普摽傻茫簝蓷l平行線間的距離__.

  三、平行四邊形的定義及性質(zhì)的應(yīng)用

  1.計算.

  1填空.

 。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;

 。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;

 。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;

 。4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;

  (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  說明:通過此題讓學生熟悉平行四邊形的性質(zhì),會用它及方程的思想進行計算,并復(fù)習平行四邊形的面積公式.

  2.證明.

  2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.

  分析:

 。1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.

 。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來解題.

  3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.

  著重引導(dǎo)學生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質(zhì)使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.

  4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.

  分析:

  (1)引導(dǎo)學生證明以O(shè)E,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.

 。2)根據(jù)學生實際,對圖4-18(a)可作適當引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過平行四邊形對角線的交點作直線交對邊或?qū)叺难娱L線,所得對應(yīng)線段相等.

 。3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對解答復(fù)雜問題是很有幫助的.

  3.供選用例題.

  (1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?

  (2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.

 。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.

  四、師生共同小結(jié)

  1.平行四邊形與四邊形的關(guān)系.

  2.學習了平行四邊形哪些方面的性質(zhì)?

  3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?

  五、作業(yè)

  課本第143頁第2,3,4,5,6題.

  課堂教學設(shè)計說明

  本教學設(shè)計需2課時完成.

  這節(jié)內(nèi)容分2課時.第1課時在復(fù)習四邊形的有關(guān)知識的.基礎(chǔ)上,用對比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學生從邊、角、對角線三個方面探索平行四邊形的性質(zhì),使知識更加系統(tǒng),更符合學生的認知規(guī)律,而且突出了第1課時的重點,同時更能培養(yǎng)學生主動探求知識的精神和思維的條理性.第2課時重點應(yīng)用平行四邊形的定義、性質(zhì)進行計算和證明,教師注意讓學生鞏固基礎(chǔ)知識和基本技能,加強對解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.

  平行四邊形及其性質(zhì)

  教學目標

  1、知識目標

 。1)使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。

 。2)掌握平行四邊形的性質(zhì)定理1、2,并能運用這些知識進行有關(guān)的證明或計算.

  2、能力目標

  (1)通過啟發(fā)、引導(dǎo),讓學生猜想結(jié)論,培養(yǎng)學生的觀察能力和猜想能力。

 。2)驗證猜想結(jié)論,培養(yǎng)學生的論證和邏輯思維能力。

 。3)通過開放式教學,培養(yǎng)學生的創(chuàng)新意識和實踐能力。

  3、非智力目標

  滲透從具體到抽象、化未知為已知的數(shù)學思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點.

  教學重點、難點

  重點:平行四邊形的概念及其性質(zhì).

  難點:正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。

  平行四邊形的概念及性質(zhì)的靈活運用

  教學方法:講解、分析、轉(zhuǎn)化

  教學過程設(shè)計

  一、利用分類、特殊化的方法引出平行四邊形的概念

  1.復(fù)習四邊形的知識.

  (1)引導(dǎo)學生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質(zhì),強調(diào)對角線的作用:將四邊形分割化歸為三角形來研究.

 。2)將四邊形的邊角按位置關(guān)系分為兩類:

  教學時應(yīng)結(jié)合圖形,讓學生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區(qū)別.

  2.教師提問:四邊形中的兩組對邊按位置關(guān)系分為幾種情況?

  引導(dǎo)學生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.

  3.對比引出平行四邊形的概念.

 。1)引導(dǎo)學生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.

 。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時它還具有一般四邊形不具備的特殊性質(zhì)(個性).

 。3)強調(diào)定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質(zhì).

 。4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.

 、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)

 、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)

  練習1(投影)

  如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.

  二、探索平行四邊形的性質(zhì)并證明

  1.探索性質(zhì).

  啟發(fā)學生從平行四邊形的主要元素——邊、角、對角線的位置關(guān)系及數(shù)量關(guān)系入手,來觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:

  (3)對角線

 、輰蔷互相平分(性質(zhì)定理3)

  教師注意解釋并強調(diào)對角線互相平分的含義及表示方法.

  2.利用化歸的方法對性質(zhì)逐一進行證明.

  (1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.

 。2)啟發(fā)學生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質(zhì)②,⑤.

  (3)寫出證明過程.

  3.關(guān)于“兩條平行線間的平行線段和距離”的教學.

 。1)利用性質(zhì)定理2

  導(dǎo)出推論:夾在兩條平行線間的平行線段相等.

 、偬釂枺涸趫D4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學生根據(jù)平行四邊形的定義和性質(zhì)進行證明.

 、谝龑(dǎo)學生用語言簡練地敘述圖4-14所反映的幾何命題,并強調(diào)它的作用.證題時可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.

 、蹚娬{(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習.

  練習2

 。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.

 。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習區(qū)別三個距離.

  練習3

  在圖4-15(d)中,

  ①點A與點C的距離是線段__的長;

 、邳cA到直線l2的距離是線段__的長;

 、蹆蓷l平行線l1與l2的距離是線段__或__的長;

  ④由推論可得:兩條平行線間的距離__.

  三、平行四邊形的定義及性質(zhì)的應(yīng)用

  1.計算.

  1填空.

 。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;

  (2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;

 。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;

 。4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;

  (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  說明:通過此題讓學生熟悉平行四邊形的性質(zhì),會用它及方程的思想進行計算,并復(fù)習平行四邊形的面積公式.

  2.證明.

  2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.

  分析:

 。1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.

 。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來解題.

  3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.

  著重引導(dǎo)學生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質(zhì)使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.

  4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.

  分析:

 。1)引導(dǎo)學生證明以O(shè)E,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.

  (2)根據(jù)學生實際,對圖4-18(a)可作適當引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過平行四邊形對角線的交點作直線交對邊或?qū)叺难娱L線,所得對應(yīng)線段相等.

  (3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對解答復(fù)雜問題是很有幫助的.

  3.供選用例題.

  (1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?

 。2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.

 。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.

  四、師生共同小結(jié)

  1.平行四邊形與四邊形的關(guān)系.

  2.學習了平行四邊形哪些方面的性質(zhì)?

  3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?

  五、作業(yè)

  課本第143頁第2,3,4,5,6題.

  課堂教學設(shè)計說明

  本教學設(shè)計需2課時完成.

  這節(jié)內(nèi)容分2課時.第1課時在復(fù)習四邊形的有關(guān)知識的基礎(chǔ)上,用對比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學生從邊、角、對角線三個方面探索平行四邊形的性質(zhì),使知識更加系統(tǒng),更符合學生的認知規(guī)律,而且突出了第1課時的重點,同時更能培養(yǎng)學生主動探求知識的精神和思維的條理性.第2課時重點應(yīng)用平行四邊形的定義、性質(zhì)進行計算和證明,教師注意讓學生鞏固基礎(chǔ)知識和基本技能,加強對解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.

平行四邊形教案 篇3

  教學目標

  1.使學生在理解的基礎(chǔ)上掌握平行四邊形面積的計算公式,并會運用公式正確地計算平行四邊形的面積.

  2.通過操作、觀察、比較,發(fā)展學生的空間觀念,培養(yǎng)學生運用轉(zhuǎn)化的思考方法解決問題的能力和邏輯思維能力.

  3.對學生進行辯詐唯物主義觀點的啟蒙教育.

  教學重點

  理解公式并正確計算平行四邊形的面積.

  教學難點

  理解平行四邊形面積公式的推導(dǎo)過程.

  教學過程

  復(fù)習引入

  (一)拿出事先準備好的長方形和平行四邊形.量出它的長和寬(平行四邊形量出底和高).

 。ǘ┯^察老師出示的幾個平行四邊形,指出它的底和高.

 。ㄈ┙處煶鍪疽粋長方形和一個平行四邊形.

  1.猜測:哪一個圖形面積比較大?大多少平方厘米呢?

  2.要想我們準確的答案,就要用到今天所學的知識——“平行四邊形面積的計算”

  板書課題:平行四邊形面積的.計算

  二、指導(dǎo)探究

 。ㄒ唬⿺(shù)方格方法

  1.小組合作討論:

  (1)圖上標的厘米表示什么?每個小方格表示1平方厘米為什么?

 。2)長方形的長是多少厘米?寬是多少厘米?面積是多少平方厘米?

 。3)用數(shù)方格的方法,求出平行四邊形的面積?(不滿一格的,都按半格計算)

  (4)比較平行四邊形的底和長方形的長,再比較平行四邊形的高和長方形的寬,你發(fā)現(xiàn)了什么?

  2.集體訂正

  3.請同學評價一下用數(shù)方格的方法求平行四邊形的面積.

  學生:麻煩,有局限性.

  (二)探索平行四邊形面積的計算公式.

  1.教師談話

  不數(shù)方格怎樣能夠計算平行四邊形的面積呢?想一想,如果我們把平行四邊形轉(zhuǎn)化成我們過去學過的圖形,就可以根據(jù)已學過的面積公式計算出它的面積了,轉(zhuǎn)化成什么圖形,怎樣轉(zhuǎn)化呢?請大家拿出手里的學具試試看.

  2.學生動手剪拼(可以小組合作),并向周圍同學說一說是怎樣轉(zhuǎn)化的.

  3.學生到前面演示轉(zhuǎn)化的方法.

  4.演示課件:平行四邊形的面積

  5.組織學生討論:

 。1)平行四邊形和轉(zhuǎn)化后的長方形有什么關(guān)系?

 。2)怎樣計算平行四邊形的面積?為什么?

 。3)如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么平行四邊形面積的字母公式是什么?

  (三)應(yīng)用

  例1.一塊平行四邊形鋼板,它的面積是多少?(得數(shù)保留整數(shù))

  4.8×3.5≈17(平方米)

  答:它的面積約是17平方米.

  三、質(zhì)疑小結(jié)

  今天你學到了哪些知識?怎樣計算平行四邊形面積?

  四、鞏固練習

 。ㄒ唬┝惺讲⒂嬎忝娣e

  1.底=8厘米,高=5厘米,

  2.底=10米,高=4米,

  3.底=20分米,高=7分米

 。ǘ┱f出下面每個平行四邊形的底和高,計算它們的面積.

  (三)應(yīng)用題

  有一塊地近似平行四邊形,底是43米,商是20.1米,這塊地的面積約是多少平方米?(得數(shù)保留整數(shù))

 。ㄋ模┝砍瞿闶掷锲叫兴倪呅螌W具的底和高,并計算出它的面積.

  教案點評:

  該教學設(shè)計在學習面積的計算過程中,引導(dǎo)學生進行大膽猜想,提出假設(shè),放手讓學生去實踐,把學生推到了課堂教學活動的主體地位,用科學的方法去驗證假設(shè),使學生學到了解決問題的方法,同時培養(yǎng)了學生的邏輯思維和動手操作的能力。

【平行四邊形教案】相關(guān)文章:

平行四邊形教案01-02

平行四邊形教案04-01

平行四邊形面積教案02-10

《平行四邊形的性質(zhì)》教案12-16

平行四邊形面積 教案12-17

教案-平行四邊形的面積12-17

《平行四邊形的面積》教案01-02

數(shù)學《平行四邊形的面積》教案02-14

平行四邊形 教案設(shè)計12-16

平行四邊形的面積的計算教案12-16