欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-09-02 17:56:08 總結(jié) 我要投稿

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)是在一段時(shí)間內(nèi)對(duì)學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它能夠給人努力工作的動(dòng)力,我想我們需要寫一份總結(jié)了吧。那么如何把總結(jié)寫出新花樣呢?以下是小編幫大家整理的高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家分享。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  定義域補(bǔ)充

  能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

  構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域

  再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的.定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)

  值域補(bǔ)充

  (1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域.(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

  3.函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.

  C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

  圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。

  (2)畫法

  A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對(duì)應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x,y),最后用平滑的曲線將這些點(diǎn)連接起來.

  B、圖象變換法(請(qǐng)參考必修4三角函數(shù))

  常用變換方法有三種,即平移變換、伸縮變換和對(duì)稱變換

  (3)作用:

  1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  指數(shù)函數(shù)——信息技術(shù)應(yīng)用 借助信息技術(shù)探究指數(shù)函數(shù)的性質(zhì)

  對(duì)數(shù)函數(shù)——閱讀與思考 對(duì)數(shù)的發(fā)明

  探究與發(fā)現(xiàn) 互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系

  冪函數(shù)

  復(fù)習(xí)參考題

  第三章 函數(shù)的應(yīng)用

  函數(shù)與方程——閱讀與思考 中外歷史上的方程求解

  信息技術(shù)應(yīng)用 借助信息技術(shù)求方程的近似解

  函數(shù)模型及其應(yīng)用——信息技術(shù)應(yīng)用 收集數(shù)據(jù)并建立函數(shù)模型

  實(shí)習(xí)作業(yè)

  復(fù)習(xí)參考題

  關(guān)于數(shù)學(xué):

  課本上講的定理,你可以自己 試著自己去推理。這樣不但提高自己的證明能力,也加深對(duì)公式的理解。還有就 是大量練習(xí)題目。基本上每課之后都要做課余練習(xí)的題目(不包括老師的作業(yè))。

  數(shù)學(xué)成績的提高,數(shù)學(xué)方法的掌握都和同學(xué)們良好的學(xué)習(xí)習(xí)慣分不開 的,因此。良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣包括:聽講、閱讀、探究、作業(yè)。聽講:應(yīng)抓住 聽課中的主要矛盾和問題,在聽講時(shí)盡可能與老師的講解同步思考,必要時(shí)做好 筆記。每堂課結(jié)束以后應(yīng)深思一下進(jìn)行歸納,做到一課一得。

  閱讀:閱讀時(shí)應(yīng) 仔細(xì)推敲,弄懂弄通每一個(gè)概念、定理和法則,對(duì)于例題應(yīng)與同類參考書聯(lián)系起 來一同學(xué)習(xí),博采眾長,增長知識(shí),發(fā)展思維。

  探究:要學(xué)會(huì)思考,在問題解 決之后再探求一些新的方法,學(xué)會(huì)從不同角度去思考問題,甚至改變條件或結(jié)論 去發(fā)現(xiàn)新問題,經(jīng)過一段學(xué)習(xí),應(yīng)當(dāng)將自己的思路整理一下,以形成自己的思維 規(guī)律。作業(yè):要先復(fù)習(xí)后作業(yè),先思考再動(dòng)筆,做會(huì)一類題領(lǐng)會(huì)一大片,作業(yè)要 認(rèn)真、書寫要規(guī)范,只有這樣腳踏實(shí)地,一步一個(gè)腳印,才能學(xué)好數(shù)學(xué)。

  總之,在學(xué)習(xí)數(shù)學(xué)的過程中,要認(rèn)識(shí)到數(shù)學(xué)的重要性,充分發(fā)揮自己 的主觀能動(dòng)性,從小的細(xì)節(jié)注意起,養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣,進(jìn)而培養(yǎng)思考問 題、分析問題和解決問題的能力,最終把數(shù)學(xué)學(xué)好。

  到了高中,數(shù)學(xué)跟初中數(shù) 學(xué)是有很多的不同,對(duì)知識(shí)的理解能力要求高了,對(duì)數(shù)學(xué)思維的要求也高了,憑 以前的方法是不行了。

  高中數(shù)學(xué)學(xué)習(xí)方法一般來講還是以上課認(rèn)真聽講為主, 抓住課本典型例題理解透了掌握透了才是王道,千萬別只顧著看參考書了,那是 本末倒置的方法;另外與老師交朋友經(jīng)常與老師溝通,問問題、請(qǐng)教學(xué)習(xí)方法都 很重要。建立自己的錯(cuò)題檔案是殺手锏的一招。

  總之,是個(gè)積累的過程,你了 解的越多,學(xué)習(xí)就越好,所以多記憶,選擇自己的方法。

  有關(guān)數(shù)學(xué)知識(shí)點(diǎn)拓展 數(shù)學(xué)(mathematics),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念 的一門學(xué)科,從某種角度看屬于形式科學(xué)的一種。借用《數(shù)學(xué)簡史》的話,數(shù)學(xué)就是研究集合上各種結(jié)構(gòu)(關(guān)系)的`科學(xué), 可見,數(shù)學(xué)是一門抽象的學(xué)科,而嚴(yán)謹(jǐn)?shù)倪^程是數(shù)學(xué)抽象的關(guān)鍵。

  數(shù)學(xué)在人類歷史發(fā)展和社會(huì)生活中發(fā)揮著不可替代的作用,也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。

  數(shù)學(xué)起源于人類早期的生產(chǎn)活動(dòng),古巴比倫人從遠(yuǎn)古時(shí)代開始已經(jīng)積 累了一定的數(shù)學(xué)知識(shí),并能應(yīng)用實(shí)際問題。從數(shù)學(xué)本身看,他們的數(shù)學(xué)知識(shí)也只 是觀察和經(jīng)驗(yàn)所得,沒有綜合結(jié)論和證明,但也要充分肯定他們對(duì)數(shù)學(xué)所做出的 貢獻(xiàn)。

  基礎(chǔ)數(shù)學(xué)的知識(shí)與運(yùn)用是個(gè)人與團(tuán)體生活中不可或缺的一部分。其基 本概念的精煉早在古埃及、美索不達(dá)米亞及古印度內(nèi)的古代數(shù)學(xué)文本內(nèi)便可觀見。

  從那時(shí)開始,其發(fā)展便持續(xù)不斷地有小幅度的進(jìn)展。但當(dāng)時(shí)的代數(shù)學(xué)和幾何學(xué)長 久以來仍處于獨(dú)立的狀態(tài)。代數(shù)學(xué)可以說是最為人們廣泛接受的“數(shù)學(xué)”。

  可以說每一個(gè)人從小時(shí)候開始學(xué)數(shù)數(shù)起,最先接觸到的數(shù)學(xué)就是代數(shù) 學(xué)。而數(shù)學(xué)作為一個(gè)研究“數(shù)”的學(xué)科,代數(shù)學(xué)也是數(shù)學(xué)最重要的組成部分之一。

  幾何學(xué)則是最早開始被人們研究的數(shù)學(xué)分支。直到16世紀(jì)的文藝復(fù)興時(shí)期,笛卡 爾創(chuàng)立了解析幾何,將當(dāng)時(shí)完全分開的代數(shù)和幾何學(xué)聯(lián)系到了一起。從那以后, 我們終于可以用計(jì)算證明幾何學(xué)的定理;同時(shí)也可以用圖形來形象的表示抽象的 代數(shù)方程。而其后更發(fā)展出更加精微的微積分。

  西方最原始math(數(shù)學(xué))應(yīng)用之一,奇普現(xiàn)時(shí)數(shù)學(xué)已包括多個(gè)分支。創(chuàng) 立于二十世紀(jì)三十年代的法國的布爾巴基學(xué)派則認(rèn)為:數(shù)學(xué),至少純數(shù)學(xué),是研 究抽象結(jié)構(gòu)的理論。結(jié)構(gòu),就是以初始概念和公理出發(fā)的演繹系統(tǒng)。他們認(rèn)為, 數(shù)學(xué)有三種基本的母結(jié)構(gòu):代數(shù)結(jié)構(gòu)(群,環(huán),域,格……)、序結(jié)構(gòu)(偏序,全序 ……)、拓?fù)浣Y(jié)構(gòu)(鄰域,極限,連通性,維數(shù)……)。

  數(shù)學(xué)被應(yīng)用在很多不同的領(lǐng)域上,包括科學(xué)、工程、醫(yī)學(xué)和經(jīng)濟(jì)學(xué)等。

  數(shù)學(xué)在這些領(lǐng)域的應(yīng)用一般被稱為應(yīng)用數(shù)學(xué),有時(shí)亦會(huì)激起新的數(shù)學(xué)發(fā)現(xiàn),并促 成全新數(shù)學(xué)學(xué)科的發(fā)展。數(shù)學(xué)家也研究純數(shù)學(xué),也就是數(shù)學(xué)本身,而不以任何實(shí) 際應(yīng)用為目標(biāo)。雖然有許多工作以研究純數(shù)學(xué)為開端,但之后也許會(huì)發(fā)現(xiàn)合適的 應(yīng)用。

  具體的,有用來探索由數(shù)學(xué)核心至其他領(lǐng)域上之間的連結(jié)的子領(lǐng)域:由邏輯、集合論(數(shù)學(xué)基礎(chǔ))、至不同科學(xué)的經(jīng)驗(yàn)上的數(shù)學(xué)(應(yīng)用數(shù)學(xué))、以較近代 的對(duì)于不確定性的研究(混沌、模糊數(shù)學(xué))。就縱度而言,在數(shù)學(xué)各自領(lǐng)域上的探 索亦越發(fā)深入。

  如何學(xué)好數(shù)學(xué)

  1、重視課本知識(shí)

  對(duì)于高一學(xué)生來說,大部分?jǐn)?shù)學(xué)知識(shí)的來源都是課本,只有很少的一部分知識(shí)是課外拓展。所以高一學(xué)生想要學(xué)好數(shù)學(xué),就要先把課本知識(shí)理解透徹。平時(shí)做題的時(shí)候,也要以課本為重,把課本上的練習(xí)做會(huì)了,再做其他題。

  2、課前預(yù)習(xí)

  對(duì)很多高一學(xué)生來說,還沒有養(yǎng)成良好的學(xué)習(xí)習(xí)慣,完全沒有課前預(yù)習(xí)的習(xí)慣。但是如果想要學(xué)好高一數(shù)學(xué),一定要進(jìn)行適當(dāng)?shù)念A(yù)習(xí),如果時(shí)間不多,可以瀏覽一下老師要講的主要內(nèi)容,有一個(gè)大概的印象。這樣在上課的時(shí)候,可以更好的跟上老師的思路。

  最牛高考勵(lì)志書,淘寶搜索《高考蝶變》購買!

  3、記好筆記

  對(duì)于高一學(xué)生來說,想要學(xué)好數(shù)學(xué),記好課堂筆記也是一件很重要的事情。不要以為記筆記是文科生該做的事情,理科同樣需要。高一學(xué)生要清楚,在這45分鐘內(nèi),并不是所有的知識(shí)點(diǎn)都能掌握的,這個(gè)時(shí)候要把自己沒有理解的知識(shí)點(diǎn)記下來,然后課下再去鉆研。另外筆記也可以作為考試復(fù)習(xí)時(shí)的參考!

  4、及時(shí)復(fù)習(xí)

  想要學(xué)好高一數(shù)學(xué),及時(shí)復(fù)習(xí)是其中重要的一環(huán)。高一學(xué)生可以通過反復(fù)閱讀教材和查找相關(guān)資料,來加深自己對(duì)基本概念和知識(shí)體系的理解和記憶,把自己學(xué)到的新知識(shí)和舊知識(shí)聯(lián)系起來,進(jìn)行比較和分析。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  不等式

  不等關(guān)系

  了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.

  (2)一元二次不等式

  ①會(huì)從實(shí)際情境中抽象出一元二次不等式模型.

 、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應(yīng)的`二次函數(shù)、一元二次方程的聯(lián)系.

 、蹠(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.

  (3)二元一次不等式組與簡單線性規(guī)劃問題

  ①會(huì)從實(shí)際情境中抽象出二元一次不等式組.

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組.

 、蹠(huì)從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

  (4)基本不等式:

  ①了解基本不等式的證明過程.

 、跁(huì)用基本不等式解決簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  定義:

  x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。

  范圍:

  傾斜角的取值范圍是0°≤α

  理解:

  (1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;

  (2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。

  意義:

 、僦本的傾斜角,體現(xiàn)了直線對(duì)x軸正向的傾斜程度;

 、谠谄矫嬷苯亲鴺(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;

  ③傾斜角相同,未必表示同一條直線。

  公式:

  k=tanα

  k>0時(shí)α∈(0°,90°)

  k

  k=0時(shí)α=0°

  當(dāng)α=90°時(shí)k不存在

  ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)

  當(dāng)a≠0時(shí),傾斜角為90度,即與X軸垂直

  兩角和與差的三角函數(shù):

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  三角和的三角函數(shù):

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  輔助角公式:

  Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

  sint=B/(A2+B2)^(1/2)

  cost=A/(A2+B2)^(1/2)

  tant=B/A

  Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

  倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα+cotα)

  cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

  tan(2α)=2tanα/[1-tan2(α)]

  三倍角公式:

  sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

  cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

  tan(3α)=tana·tan(π/3+a)·tan(π/3-a)

  半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1+cosα)/2)

  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

  降冪公式

  sin2(α)=(1-cos(2α))/2=versin(2α)/2

  cos2(α)=(1+cos(2α))/2=covers(2α)/2

  tan2(α)=(1-cos(2α))/(1+cos(2α))

  萬能公式:

  sinα=2tan(α/2)/[1+tan2(α/2)]

  cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

  tanα=2tan(α/2)/[1-tan2(α/2)]

  積化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  和差化積公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  二面角

  (1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

  (2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的棱:這一條直線叫做二面角的棱。

  (4)二面角的.面:這兩個(gè)半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)。記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域。

  注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式。

  定義域補(bǔ)充

  能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的。那么,它的定義域是使各部分都有意義的x的值組成的集合。(6)指數(shù)為零底不可以等于零(6)實(shí)際問題中的函數(shù)的`定義域還要保證實(shí)際問題有意義。

  構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域

  再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域。由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)

  值域補(bǔ)充

  (1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域。(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

  3.函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象。

  C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}

  圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。

  (2)畫法

  A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對(duì)應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x,y),最后用平滑的曲線將這些點(diǎn)連接起來。

  B、圖象變換法(請(qǐng)參考必修4三角函數(shù))

  常用變換方法有三種,即平移變換、伸縮變換和對(duì)稱變換

  (3)作用:

  1、直觀的看出函數(shù)的性質(zhì);

  2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  一、集合(jihe)有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性;

  2.元素的互異性;

  3.元素的無序性

  說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋

  記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

 、僬Z言描述法:例:{不是直角三角形的三角形}

  ②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  4、集合的分類:

  1.有限集含有有限個(gè)元素的集合

  2.無限集含有無限個(gè)元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果A?B,B?C,那么A?C

 、苋绻鸄?B同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

  4、全集與補(bǔ)集

  (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  記作:CSA即CSA={x?x?S且x?A}

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

  (3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的'數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  注意:○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  定義域補(bǔ)充

  能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)不小于零;

  (3)對(duì)數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數(shù)為零底不可以等于零

  (6)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

  (又注意:求出不等式組的解集即為函數(shù)的定義域。)

  2.構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域

  再注意:

  (1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

  (2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:

 、俦磉_(dá)式相同;

  ②定義域一致(兩點(diǎn)必須同時(shí)具備)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  一、直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

  (2)直線的斜率

 、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

  ②過兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):

  (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90

  (2)k與P1、P2的.順序無關(guān);

  (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  (3)直線方程

 、冱c(diǎn)斜式:直線斜率k,且過點(diǎn)

  注意:當(dāng)直線的斜率為0時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

  ②斜截式:,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c(diǎn)式:()直線兩點(diǎn),

 、芙鼐厥剑浩渲兄本與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

 、菀话闶剑(A,B不全為0)

 、菀话闶剑(A,B不全為0)

  注意:○1各式的適用范圍

  ○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (4)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)過定點(diǎn)的直線系

  (ⅰ)斜率為k的直線系:直線過定點(diǎn);

  (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。

  (5)兩直線平行與垂直;

  注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

  (6)兩條直線的交點(diǎn)

  相交:交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解;方程組有無數(shù)解與重合

  (7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

  (8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

  (9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  圓錐曲線性質(zhì):

  一、圓錐曲線的定義

  1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(定長大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.

  2.雙曲線:到兩個(gè)定點(diǎn)的距離的差的絕對(duì)值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線.即.

  3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時(shí)為雙曲線.

  二、圓錐曲線的方程

  1.橢圓:+ =1(a>b>0)或+ =1(a>b>0)(其中,a2=b2+c2)

  2.雙曲線:- =1(a>0,b>0)或- =1(a>0,b>0)(其中,c2=a2+b2)

  3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

  三、圓錐曲線的性質(zhì)

  1.橢圓:+ =1(a>b>0)

  (1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e= ∈(0,1)

  2.雙曲線:- =1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e= ∈(1,+∞)(5)準(zhǔn)線:x=± (6)漸近線:y=± x

  3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):( ,0)(4)離心率:e=1

  拓展閱讀:高一數(shù)學(xué)學(xué)習(xí)方法

  1、積極調(diào)整心態(tài)。對(duì)于高一學(xué)生暫時(shí)學(xué)數(shù)學(xué)有困難的問題,千萬不要產(chǎn)生畏難情緒,因?yàn)榇蟛糠值母咧猩加龅竭^這種問題。困難是暫時(shí)的,只要樹立好學(xué)習(xí)數(shù)學(xué)的信心,找好學(xué)習(xí)數(shù)學(xué)的方法,就一定能學(xué)好數(shù)學(xué)的。高一學(xué)生要調(diào)整好自己的心態(tài),學(xué)會(huì)對(duì)自己的學(xué)習(xí)情況進(jìn)行評(píng)估,分?jǐn)?shù)可以直觀的反應(yīng)出自己的一些情況,只有明白自己的問題,才能有效的糾正它。

  2、多動(dòng)筆、勤做題。在高中的數(shù)學(xué)課堂上,老師的板書還是挺多的。這個(gè)時(shí)候需要高一學(xué)生跟著老師勤動(dòng)筆,勤做題。因?yàn)椴粍?dòng)腦跟不上老師的思路,不動(dòng)筆,就不會(huì)知道下一步是什么。多動(dòng)筆,不僅是需要學(xué)生們幾段,更重要的'是通過解題步驟的書寫,理清自己的思路。

  3、重視概念的學(xué)習(xí)。高中數(shù)學(xué)中有很多概念知識(shí),是數(shù)學(xué)重要的組成部分,很多時(shí)候?qū)τ跀?shù)學(xué)概念的了解,不能只局限于字面上,要學(xué)會(huì)從正面理解概念,還要能舉出反例,甚至是從符號(hào),圖形角度來理解概念。

  4、做題后反思。高一學(xué)生一定要明確一點(diǎn),就是現(xiàn)在正做著的題目,一定不是考試的題目。所以做題過程中最重要的是題目的解題思路和方法。所以要把自己做過的每道題都加以反思?偨Y(jié)出這多提是什么內(nèi)容,解題方法是什么,運(yùn)用了哪些數(shù)學(xué)知識(shí)。時(shí)間一長自然會(huì)提高數(shù)學(xué)成績。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  幾何體和體積具有柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩個(gè)底面是平行于對(duì)應(yīng)邊的全等多邊形;側(cè)面和對(duì)角為平行四邊形;側(cè)邊平行相等;平行于底面的截面是與底面相等的多邊形.

  (2)棱錐

  幾何特征:側(cè)面和對(duì)角為三角形;平行于底面的截面與底面相似,相似比等于從頂點(diǎn)到截面距離和高比的平方.

  (3)棱臺(tái):

  幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)邊交給原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形一側(cè)所在的直線為軸旋轉(zhuǎn),其側(cè)旋轉(zhuǎn)

  幾何特征:底面為全等圓;母線與軸平行;軸垂直于底圓的半徑;側(cè)展圖為矩形.

  (5)圓錐:定義:旋轉(zhuǎn)軸以直角三角形的直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周

  幾何特征:底面為圓;母線交于圓錐的頂點(diǎn);側(cè)展圖為扇形.

  (6)圓臺(tái):定義:旋轉(zhuǎn)軸以垂直直角梯形和底部腰部為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周

  幾何特征:上下底面有兩個(gè)圓;側(cè)母線交給原圓錐的頂點(diǎn);側(cè)展圖為弓形.

  (7)球體:定義:以半圓直徑直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:球的截面是圓的;球面上任何一點(diǎn)到球心的距離等于半徑.

  2.空間幾何三視圖

  定義三個(gè)視圖:正視圖(光線從幾何前面投影到后面);側(cè)視圖(從左到右)

  俯視圖(從上到下)

  注:正視圖反映物體的高度和長度;俯視圖反映物體的長度和寬度;側(cè)視圖反映物體的高度和寬度.

  3.空間幾何直觀圖-斜二測(cè)繪法

  斜二測(cè)繪法特點(diǎn):與x軸平行的線段仍與x平行,長度不變;

  與y軸平行的線段仍與y平行,長度為原來的一半.

  4.柱、錐、臺(tái)的.表面積和體積

  (1)幾何體的表面積是幾何體各個(gè)面積的和.

  (2)特殊幾何體表面積公式(c底部周長,h為高,為斜高,l為母線)

  (3)柱、錐、臺(tái)的體積公式

  總結(jié)高中數(shù)學(xué)必修二知識(shí)點(diǎn):直線和方程

  (1)直線傾斜角

  定義:x軸向和直線向上方向之間的角稱為直線傾斜角.特別是當(dāng)直線與x軸平行或重合時(shí),我們將其傾斜角設(shè)置為0度.因此,傾斜角的值范圍為0°≤α<180°

  (2)直線斜率

  定義:傾斜角不是90°直線,傾斜角的正切稱為直線的斜率.直線斜率常用k表示.即.斜率反映了直線和軸的傾斜程度.

  當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.

  兩點(diǎn)以上的直線斜率公式:

  注意以下四點(diǎn):(1)當(dāng)時(shí)公式右側(cè)毫無意義,直線斜率不存在,傾斜角90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可以通過直線上兩點(diǎn)的坐標(biāo)直接獲得,而不是傾斜角;

  (4)直線上兩點(diǎn)的坐標(biāo)先求斜率可以獲得直線的傾斜角.

  (3)直線方程

  點(diǎn)斜:直線斜率k,且過點(diǎn)

  注:當(dāng)直線的斜率為0時(shí)°時(shí),k=直線方程為y=y1.

  當(dāng)直線的斜率為90時(shí)°當(dāng)直線斜率不存在時(shí),其方程不能用點(diǎn)斜表示.但是l上的每一個(gè)橫坐標(biāo)都等于x所以它的方程是x=x1.

  斜截:,直線斜率為k,Y軸上直線的截距為b

  兩點(diǎn)式:()直線兩點(diǎn),截矩式:

  直線與軸交點(diǎn),與軸交點(diǎn),即與軸和軸的截距.

  一般式:(A,B不全為0)

  注:各種適用范圍的特殊方程,如:

  (4)平行于x軸的直線:(b為常數(shù));與y軸平行的直線:(a為常數(shù));

  (5)直線系方程:即具有一定共同性質(zhì)的直線

  (一)平行直線系

  直線系統(tǒng)平行于已知直線(不全為0):(C為常數(shù))

  (二)垂直線系

  直線系垂直于已知直線(不全為0的常數(shù)):(C為常數(shù))

  (3)直線系過定點(diǎn)

  ()直線系斜率為k:,直線過定點(diǎn);

  ()有兩條直線,交點(diǎn)的直線系方程為

  (參數(shù))直線不在直線系中.

  (6)兩條直線平行垂直

  注:利用斜率判斷直線的平行和垂直時(shí),應(yīng)注意斜率的存在.

  (7)兩條直線的交點(diǎn)

  相交

  交點(diǎn)坐標(biāo)是方程組的一組解.

  方程組無解;方程組有無數(shù)的解和重疊

  (8)兩點(diǎn)間距公式:平面直角坐標(biāo)系中的兩點(diǎn)

  (9)點(diǎn)到直線距離公式:點(diǎn)到直線的距離

  (10)兩平行直線距離公式

  在任何一條直線上任取一點(diǎn),然后轉(zhuǎn)化為點(diǎn)到直線的距離求解。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

  復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。

  指數(shù)與對(duì)數(shù)函數(shù),初中學(xué)習(xí)方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

  函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對(duì)數(shù);

  正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。

  兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;

  求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

  冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

  奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,高中地理,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為?k?。

  如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的'函數(shù)圖像。

  當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  知識(shí)點(diǎn):

  1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為k。

  2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  第一章集合與函數(shù)概念

  一、集合有關(guān)概念1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。 2、集合的中元素的三個(gè)特性:1.元素的確定性; 2.元素的互異性; 3.元素的無序性

  說明:

  (1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{ … }如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋} 1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R關(guān)于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。 ①語言描述法:例:{不是直角三角形的三角形} ②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

  4、集合的分類:

  1.有限集含有有限個(gè)元素的集合2.無限集含有無限個(gè)元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設(shè)A={x|x2-1=0} B={-1,1} “元素相同”

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B ①任何一個(gè)集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

 、廴绻鸄íB, BíC ,那么AíC

  ④如果AíB同時(shí)BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運(yùn)算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補(bǔ)集(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作:CSA即CSA ={x | x?S且x?A}

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ

 、(CUA)∪A=U

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域

  .注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;

  3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.定義域補(bǔ)充能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零;

  (3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實(shí)際問題中的'函數(shù)的定義域還要保證實(shí)際問題有意義. (又注意:求出不等式組的解集即為函數(shù)的定義域。)構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備) (見課本21頁相關(guān)例2)值域補(bǔ)充(1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域. (2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。 3.函數(shù)圖象知識(shí)歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x ∈A)的圖象. C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.即記為C={ P(x,y) | y= f(x) , x∈A }圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。 (2)畫法A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對(duì)應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x, y),最后用平滑的曲線將這些點(diǎn)連接起來. B、圖象變換法(請(qǐng)參考必修4三角函數(shù))常用變換方法有三種,即平移變換、伸縮變換和對(duì)稱變換

  (3)作用:1、直觀的看出函數(shù)的性質(zhì); 2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。發(fā)現(xiàn)解題中的錯(cuò)誤。 4.快去了解區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示.

  5.什么叫做映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作“f:A B”給定一個(gè)集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對(duì)應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

  說明:函數(shù)是一種特殊的映射,映射是一種特殊的對(duì)應(yīng)

  ,①集合A、B及對(duì)應(yīng)法則f是確定的;②對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對(duì)應(yīng),它與從B到A的對(duì)應(yīng)關(guān)系一般是不同的;③對(duì)于映射f:A→B來說,則應(yīng)滿足:

  (Ⅰ)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);

  (Ⅲ)不要求集合B中的每一個(gè)元素在集合A中都有原象。

  常用的函數(shù)表示法及各自的優(yōu)點(diǎn):

  1函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);

  2解析法:必須注明函數(shù)的定義域;

  3圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;

  4列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.注意。航馕龇ǎ罕阌谒愠龊瘮(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值

  補(bǔ)充一:分段函數(shù)(參見課本P24-25)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。在不同的范圍里求函數(shù)值時(shí)必須把自變量代入相應(yīng)的表達(dá)式。

  分段函數(shù)的解析式不能寫成幾個(gè)不同的方程,而就寫函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號(hào)括起來,并分別注明各部分的自變量的取值情況.

  (1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);

  (2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.補(bǔ)充二:復(fù)合函數(shù)如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱為f、g的復(fù)合函數(shù)。

  例如: y=2sinX y=2cos(X2+1)

  7.函數(shù)單調(diào)性

  (1).增函數(shù)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

  注意:1函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì)

  2必須是對(duì)于區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2;當(dāng)x1

  (2)圖象的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)

  定義法:1任取x1,x2∈D,且x1

  8.函數(shù)的奇偶性(1)偶函數(shù)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2).奇函數(shù)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  注意:1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。 2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).

  (3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

  總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

  1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;

  2確定f(-x)與f(x)的關(guān)系;

  3作出相應(yīng)結(jié)論:若f(-x) = f(x)或f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x)或f(-x)+f(x) = 0,則f(x)是奇函數(shù).注意。汉瘮(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.

  首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定; (2)有時(shí)判定f(-x)=±f(x)比較困難,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定.

  9、函數(shù)的解析表達(dá)式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域. (2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡單時(shí),也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x)

  10.函數(shù)最大(小)值(定義見課本p36頁)

  1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值2利用圖象求函數(shù)的最大(小)值3利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

  第二章基本初等函數(shù)

  一、指數(shù)函數(shù)(一)指數(shù)與指數(shù)冪的運(yùn)算

  1.根式的概念:一般地,如果,那么叫做的次方根(n th root),其中>1,且∈ *.當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radical exponent),叫做被開方數(shù)(radicand)

  .當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成± ( >0).

  由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,2.分?jǐn)?shù)指數(shù)冪正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:,0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential ),其中x是自變量,函數(shù)的定義域?yàn)镽.注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)a>1 0

  (1)在[a,b]上,值域是或;

  (2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);

  (3)對(duì)于指數(shù)函數(shù),總有;

  (4)當(dāng)時(shí),若,則;二、對(duì)數(shù)函數(shù)(一)對(duì)數(shù)1.對(duì)數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對(duì)數(shù),記作:( —底數(shù),—真數(shù),—對(duì)數(shù)式)

  說明:1注意底數(shù)的限制,且; 2 ; 3注意對(duì)數(shù)的書寫格式.兩個(gè)重要對(duì)數(shù):1常用對(duì)數(shù):以10為底的對(duì)數(shù); 2自然對(duì)數(shù):以無理數(shù)為底的對(duì)數(shù)的對(duì)數(shù).對(duì)數(shù)式與指數(shù)式的互化對(duì)數(shù)式指數(shù)式對(duì)數(shù)底數(shù)← →冪底數(shù)對(duì)數(shù)← →指數(shù)真數(shù)← →冪(二)對(duì)數(shù)的運(yùn)算性質(zhì)如果,且,那么:1 · + ; 2 - ; 3 .注意:換底公式(,且;,且; ).利用換底公式推導(dǎo)下面的結(jié)論(1) ;(2) . (二)對(duì)數(shù)函數(shù)1、對(duì)數(shù)函數(shù)的概念:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).注意:1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:,都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù). 2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且. 2、對(duì)數(shù)函數(shù)的性質(zhì):a>1 0

  (三)冪函數(shù)

  1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù). 2、冪函數(shù)性質(zhì)歸納. (1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1); (2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸; (3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.第三章函數(shù)的應(yīng)用一、方程的根與函數(shù)的零點(diǎn)1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn). 3、函數(shù)零點(diǎn)的求法:求函數(shù)的零點(diǎn):1 (代數(shù)法)求方程的實(shí)數(shù)根; 2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn). 4、二次函數(shù)的零點(diǎn):二次函數(shù). 1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn). 2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn). 3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn)。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  高一上學(xué)期數(shù)學(xué)知識(shí)點(diǎn)歸納

  1、多面體的結(jié)構(gòu)特征

 。1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

  正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱、反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

  (2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形、

  正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐、特別地,各棱均相等的正三棱錐叫正四面體、反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

 。3)棱臺(tái)可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2、旋轉(zhuǎn)體的結(jié)構(gòu)特征

  (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。

  (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。

  (3)圓臺(tái)可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

  (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

  3、空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖、

  三視圖的長度特征:“長對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬、若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法、

  4、空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測(cè)畫法來畫,基本步驟是:

 。1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對(duì)應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸、已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

 。2)畫幾何體的高

  在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對(duì)應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。

  當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  學(xué)好高中數(shù)學(xué)的方法

  克服畏難抵觸心理

  我們說,做什么事情都要有一個(gè)良好的心態(tài)。據(jù)科學(xué)家們分析,人在有心態(tài)問題時(shí)是斷然不能發(fā)揮其平時(shí)百分之一百的水平,如果是在中考甚至是在高考的考場當(dāng)中,心態(tài)出現(xiàn)了嚴(yán)重的問題,那十年的光陰一瞬間就要功虧一簣了,這豈不是讓眾多考生無顏見江東父老了嗎。

  其實(shí),你絕對(duì)沒有必要對(duì)數(shù)學(xué)有任何的心理抵觸。

  舉一個(gè)簡單的例子,如一些應(yīng)用題,雖然看上去文字描述比較多,但實(shí)際分析實(shí)用的數(shù)據(jù)僅僅有那么幾個(gè)而已,然后通過建立數(shù)學(xué)模型而列出方程,進(jìn)而得出答案。

  等完成后你會(huì)覺得數(shù)學(xué)最難的試題也不過如此的時(shí)候,頓時(shí)你的自豪感就會(huì)由然而生,這時(shí)你對(duì)數(shù)學(xué)的抵觸情緒便云開霧散,灰飛煙滅了。

  上課40分鐘很重要

  對(duì)于課堂上老師所講的每一個(gè)公式,每一條定理都要深究其源,這樣即便在考試當(dāng)中忘了公式,也可以很好的解決問題,不至于內(nèi)心的慌亂和緊張。另外要充分利用好課堂這短短的45分鐘的時(shí)間,盡量在課上將所學(xué)習(xí)的`知識(shí)吸收,這樣回到家后才能進(jìn)一步展開接下來的學(xué)習(xí),節(jié)約時(shí)間。

  看書寫作業(yè)的順序

  看書和寫作業(yè)要注意順序,有的老師說先寫作業(yè)再復(fù)習(xí),其實(shí)經(jīng)過證明這是完全不對(duì)的。因?yàn)樵谙抡n之后到你回家時(shí)又經(jīng)過了一段時(shí)間,這段時(shí)間難免你會(huì)把老師所講的重點(diǎn)或細(xì)節(jié)忘記,這種情況下寫作業(yè)難免會(huì)有一些問題。其實(shí),我們要養(yǎng)成良好的學(xué)習(xí)方法,盡量回家后先復(fù)習(xí)一下當(dāng)天學(xué)習(xí)的知識(shí),特別是所記的筆記要重點(diǎn)關(guān)照,然后在寫作業(yè),這樣效果更佳。

  提升數(shù)學(xué)成績的方法

  注重課本上的例題

  也許你會(huì)這樣說:那些例題太簡單了,我一看就會(huì)了。其實(shí),如果你不注意那些“過于簡單”的例題的話,在考試當(dāng)中就會(huì)吃大虧。大家都知道,近幾年來不論是中考、高考等各種數(shù)學(xué)考試的解答試題基本上都是經(jīng)過例題改編而成,如果你平時(shí)養(yǎng)成了對(duì)例題不重視的習(xí)慣,那么到考試時(shí)候,它的特殊氣氛會(huì)使你處處都感到緊張,進(jìn)而對(duì)這樣簡單的試題束手無策。所以,我們一定要在平時(shí)的學(xué)習(xí)中養(yǎng)成注重例題的習(xí)慣,這樣會(huì)在考試當(dāng)中多一分勝算。

  面對(duì)考試,平時(shí)要彌補(bǔ)漏洞

  對(duì)于平時(shí)的測(cè)驗(yàn)和考試不要注重于成績,一定要找到自己的漏洞?荚嚨墓δ芫褪且獧z驗(yàn)自己平時(shí)的學(xué)習(xí)上還有那些漏洞,有些同學(xué)過于注重成績,怕在朋友面前丟面子。如果是這樣,我勸你還是多丟面子為好。錯(cuò)題是你的寶貴經(jīng)驗(yàn),錯(cuò)一次并不可怕,下一次做對(duì)不就可以了。俗話說:久病成醫(yī),說一句白話,你錯(cuò)的越多,考試再做這樣的試題正確率就會(huì)比別人更高,笑到最后的才笑得最好。

  準(zhǔn)備錯(cuò)題本,積累經(jīng)驗(yàn)

  學(xué)習(xí)數(shù)學(xué),錯(cuò)題不可避免。對(duì)錯(cuò)題的心態(tài)人人各異,處理好反而會(huì)促進(jìn)你的學(xué)習(xí)熱情,但處理不好會(huì)使你學(xué)習(xí)數(shù)學(xué)的動(dòng)力進(jìn)一步減退。對(duì)于錯(cuò)題,希望大家準(zhǔn)備一個(gè)本,將錯(cuò)題都寫到這個(gè)本上,特別要寫出此題所考的知識(shí)點(diǎn),自己的想法,正確答案,而自己怎么不能往正確的方向上想等等。日積月累,這個(gè)本便是你寶貴的財(cái)富,也是你的“小辮子”。它是你的弱點(diǎn),但攻克它雖然要費(fèi)一些時(shí)間,但要相信你會(huì)在考試當(dāng)中充分地體現(xiàn)你自己的優(yōu)勢(shì)的。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  1、棱柱

  棱柱的定義:兩面平行,其余為四邊形,每兩個(gè)四邊形的公共邊平行,這些幾何形稱為棱柱。

  棱柱的性質(zhì)

 。1)側(cè)邊相等,側(cè)邊平行四邊形;

  (2)兩個(gè)底面與平行于底面的截面為全等多邊形;

 。3)兩個(gè)不相鄰邊緣的截面(對(duì)角)為平行四邊形。

  2、棱錐

  棱錐的定義:一個(gè)面是多邊形,另一個(gè)面是公共頂點(diǎn)的三角形,這些面的`幾何稱為棱錐。

  棱錐性質(zhì):

  (1)邊緣交點(diǎn)。側(cè)面是三角形;

 。2)平行于底部的截面與底部的多邊形相似。其面積比等于截得棱錐高于遠(yuǎn)棱錐高的平方。

  3、正棱錐

  正棱錐的定義:如果一個(gè)棱錐的底面是正多邊形在底面的射影是底面的中心,則稱為正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點(diǎn),相等,各側(cè)均為等腰三角形。各等腰三角形底邊高度相等,稱為正棱錐斜高。

 。3)多個(gè)特殊的直角三角形。

  a、相鄰兩側(cè)邊緣垂直的正三棱錐,頂點(diǎn)在底部的射影可以通過三垂線定理為底部三角形的垂心。

  b、四面體中有三對(duì)異面直線。如果兩對(duì)垂直,第三對(duì)可以垂直。底部頂部的射影是底部三角形的垂心。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  1、高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié):集合一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個(gè)特性:

  (1)元素的確定性如:世界上最高的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來,寫在大

  括號(hào)內(nèi)表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

  3)語言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類:

  (1)有限集含有有限個(gè)元素的集合

  (2)無限集含有無限個(gè)元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  2、高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié):集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè)A={x|x2

  -1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄?B,B?C,那么A?C

  ④如果A?B同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,一般我們把不含任何元素的集合叫做空集。

  3、高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié):集合的分類(1)按元素屬性分類,如點(diǎn)集,數(shù)集。(2)按元素的個(gè)數(shù)多少,分為有/無限集

  關(guān)于集合的概念:

  (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說,不能確定的對(duì)象就不能構(gòu)成集合,也就是說,給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

  (2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

  (3)無序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

  集合可以根據(jù)它含有的.元素的個(gè)數(shù)分為兩類:

  含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。

  非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N;

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

  實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。)

  1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

  有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

  無限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

  2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

  而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

  {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

  大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

  它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

  例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  一、立體幾何常用公式

  S(圓柱全面積) = 2πr(r+L);

  V(圓柱體積)= Sh;

  S(圓錐全面積) = πr(r+L);

  V(圓錐體積)= 1/3 Sh;

  S(圓臺(tái)全面積) = π(r^2+R^2+rL+RL);

  V(圓臺(tái)體積)= 1/3[s+S+√(s+S)]h;

  S(球面積) = 4πR^2;

  V(球體積) = 4/3 πR^3.

  二、立體幾何常用定理

  (1)用一個(gè)平面去截一個(gè)球,截面是圓面.

  (2)球心和截面圓心的連線垂直于截面.

  (3)球心到截面的距離d與球的半徑R及截面半徑r有下面關(guān)系:r=√(R^2 -d^2).

  (4)球面被經(jīng)過球心的平面載得的圓叫做大圓,被不經(jīng)過球心的載面截得的.圓叫做小圓.

  (5)在球面上兩點(diǎn)之間連線的最短長度,就是經(jīng)過這兩點(diǎn)的大圓在這兩點(diǎn)間的一段劣弧的長度,這個(gè)弧長叫做兩點(diǎn)間的球面距離.

【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-28

高一必修數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-05

高一數(shù)學(xué)下知識(shí)點(diǎn)總結(jié)06-09

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)05-19

數(shù)學(xué)高一高二知識(shí)點(diǎn)總結(jié)01-17

關(guān)于高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-28

數(shù)學(xué)高一函數(shù)知識(shí)點(diǎn)整理10-14

高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)歸納07-05

高一必修一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-22

高一數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)點(diǎn)總結(jié)07-21