- 相關推薦
初三數(shù)學全套知識點總結
在日常的學習中,大家最熟悉的就是知識點吧?知識點在教育實踐中,是指對某一個知識的泛稱。掌握知識點是我們提高成績的關鍵!以下是小編幫大家整理的初三數(shù)學全套知識點總結,希望對大家有所幫助。
初三數(shù)學全套知識點總結1
全套教科書包含了課程標準(實驗稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計與概率”“實踐與綜合應用”四個領域的內(nèi)容,在體系結構的設計上力求反映這些內(nèi)容之間的聯(lián)系與綜合,使它們形成一個有機的整體。
九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內(nèi)容,學習內(nèi)容涉及到了《課程標準》的四個領域。本冊書內(nèi)容分析如下:
第21章二次根式
學生已經(jīng)學過整式與分式,知道用式子可以表示實際問題中的數(shù)量關系。解決與數(shù)量關系有關的問題還會遇到二次根式!岸胃健币徽戮蛠碚J識這種式子,探索它的性質,掌握它的運算。
在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結論:
注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減!岸胃降某顺币还(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到
并運用它們進行二次根式的化簡。
“二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運算的內(nèi)容。在本節(jié)中,注意類比整式運算的有關內(nèi)容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節(jié)內(nèi)容。
第22章一元二次方程
學生已經(jīng)掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠碚J識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。
本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,
“22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數(shù)不是1的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。對于沒有實數(shù)根的一元二次方程,學了“公式法”以后,學生對這個內(nèi)容會有進一步的理解。
(2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數(shù)根的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
“22.3實際問題與一元二次方程”一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。
第23章旋轉
學生已經(jīng)認識了平移、軸對稱,探索了它們的性質,并運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。“旋轉”一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。
“23.1旋轉”一節(jié)首先通過實例介紹旋轉的概念。然后讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉后的圖形的方法。最后舉例說明用旋轉可以進行圖案設計。
“23.2中心對稱”一節(jié)首先通過實例介紹中心對稱的概念。然后讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關于原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。
“23.3課題學習圖案設計”一節(jié)讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。
第24章圓
圓是一種常見的圖形。在“圓”這一章,學生將進一步認識圓,探索它的性質,并用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。
“24.1圓”一節(jié)首先介紹圓及其有關概念。然后讓學生探究與垂直于弦的直徑有關的結論,并運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,并運用上述關系解決問題。最后讓學生探究圓周角與圓心角的關系,并運用上述關系解決問題。
“24.2與圓有關的位置關系”一節(jié)首先介紹點和圓的三種位置關系、三角形的外心的概念,并通過證明“在同一直線上的三點不能作圓”引出了反證法。然后介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最后介紹圓和圓的位置關系。
“24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。
“24.4弧長和扇形面積”一節(jié)首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側面積公式。
第25章概率初步
將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學了“概率”一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。
“25.1概率”一節(jié)首先通過實例介紹隨機事件的概念,然后通過擲幣問題引出概率的概念。
“25.2用列舉法求概率”一節(jié)首先通過具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。
“25.3利用頻率估計概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。
“25.4課題學習鍵盤上字母的排列規(guī)律”一節(jié)讓學生通過這一課題的研究體會概率的廣泛應用。
初三數(shù)學全套知識點總結2
1、圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。
3、相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4、位似
位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
初三數(shù)學全套知識點總結3
1.不在同一直線上的三點確定一個圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12.①直線L和⊙O相交d
②直線L和⊙O相切d=r
、壑本L和⊙O相離d>r
13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理圓的切線垂直于經(jīng)過切點的半徑
15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16.推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離d>R+r ②兩圓外切d=R+r
③.兩圓相交R-rr
、.兩圓內(nèi)切d=R-rR>r ⑤兩圓內(nèi)含dr
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成nn≥3:
、乓来芜B結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
24.正n邊形的每個內(nèi)角都等于n-2×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長= d-R-r外公切線長= d-R+r
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr
初三數(shù)學全套知識點總結4
不等式的概念
1、不等式:用不等號表示不等關系的式子,叫做不等式。
2、不等式的解集:對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。
3、對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
不等式基本性質
1、不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個正數(shù),不等號的方向不變。
3、不等式兩邊都乘以或除以同一個負數(shù),不等號的方向改變。
4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數(shù)化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個不等式的解集。
2利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
初三數(shù)學全套知識點總結5
。ㄈ切沃形痪的定理)
三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。
。ㄆ叫兴倪呅蔚男再|)
、倨叫兴倪呅蔚膶呄嗟;
、谄叫兴倪呅蔚膶窍嗟龋
、燮叫兴倪呅蔚膶蔷互相平分。
。ň匦蔚男再|)
、倬匦尉哂衅叫兴倪呅蔚囊磺行再|;
、诰匦蔚乃膫角都是直角;
、劬匦蔚膶蔷相等。
正方形的判定與性質
1、判定方法:
1鄰邊相等的矩形;
2鄰邊垂直的菱形;
3對角線垂直的矩形;
4對角線相等的菱形;
2、性質:
1邊:四邊相等,對邊平行;
2角:四個角都相等都是直角,鄰角互補;
3對角線互相平分、垂直、相等,且每長對角線平分一組內(nèi)角。
等腰三角形的判定定理
。ǖ妊切蔚呐卸ǚ椒ǎ
1、有兩條邊相等的三角形是等腰三角形。
2、判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形簡稱:等角對等邊。
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
標準差與方差
極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。
計算器——求標準差與方差的一般步驟:
1、打開計算器,按“ON”鍵,按“MODE”“2”進入統(tǒng)計SD狀態(tài)。
2、在開始數(shù)據(jù)輸入之前,請務必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計存儲器。
3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時,還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。
4、當所有的數(shù)據(jù)全部輸入結束后,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數(shù)據(jù)的標準差;
5、標準差的平方就是方差。
初三數(shù)學全套知識點總結6
單項式與多項式
僅含有一些數(shù)和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數(shù)或字母也是單項式。
單項式中的數(shù)字因數(shù)叫做這個單項式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。
當一個單項式的系數(shù)是1或—1時,“1”通常省略不寫。
一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
如果在幾個單項式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數(shù)都是同類項。
1、多項式
有有限個單項式的代數(shù)和組成的式子,叫做多項式。
多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數(shù)項。
單項式可以看作是多項式的特例
把同類單項式的系數(shù)相加或相減,而單項式中的字母的乘方指數(shù)不變。
在多項式中,所含的不同未知數(shù)的個數(shù),稱做這個多項式的元數(shù)經(jīng)過合并同類項后,多項式所含單項式的個數(shù),稱為這個多項式的項數(shù)所含個單項式中次項的次數(shù),就稱為這個多項式的次數(shù)。
2、多項式的值
任何一個多項式,就是一個用加、減、乘、乘方運算把已知數(shù)和未知數(shù)連接起來的式子。
3、多項式的恒等
對于兩個一元多項式fx、gx來說,當未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恒等的記為fx==gx,或簡記為fx=gx。
性質1如果fx==gx,那么,對于任一個數(shù)值a,都有fa=ga。
性質2如果fx==gx,那么,這兩個多項式的個同類項系數(shù)就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等于0的未知數(shù)x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個因式。
3、多項式的乘法
多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差。
初三數(shù)學全套知識點總結7
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
。1)若這個條件不成立,則不是二次根式;
(2)是一個重要的非負數(shù),即; ≥0。
2、重要公式:
3、積的算術平方根:
積的算術平方根等于積中各因式的算術平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
。1)利用近似值比大;
。2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大。
。3)分別平方,然后比大小。
6、商的算術平方根:,
商的算術平方根等于被除式的算術平方根除以除式的算術平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡二次根式:
。1)滿足下列兩個條件的二次根式,叫做最簡二次根式,
、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式,
②被開方數(shù)中不含能開的盡的因數(shù)或因式;
(2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;
。3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;
。4)二次根式計算的最后結果必須化為最簡二次根式。
9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。
10、二次根式的混合運算:
。1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學過的,在有理數(shù)范圍內(nèi)的一切公式和運算律在二次根式的混合運算中都適用;
。2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉化為分母有理化或約分更為簡便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數(shù)習題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。
3、一元二次方程根的判別式:當ax2+bx+c=0
。╝≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:
Δ>0 <=>有兩個不等的實根;
4、平均增長率問題————————應用題的類型題之一(設增長率為x):
(1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。
。2)常利用以下相等關系列方程:第三年=第三年或第一年+第二年+第三年=總和。
第23章旋轉
1、概念:
把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。
旋轉三要素:旋轉中心、旋轉方面、旋轉角
2、旋轉的性質:
。1)旋轉前后的兩個圖形是全等形;
(2)兩個對應點到旋轉中心的距離相等
。3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角
3、中心對稱:
把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。
這兩個圖形中的對應點叫做關于中心的對稱點。
4、中心對稱的性質:
。1)關于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
。2)關于中心對稱的兩個圖形是全等圖形。
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
初三數(shù)學全套知識點總結 8
在直角三角形中
sin@代表對邊比斜邊
cos@代表鄰邊比斜邊
tan@代表對邊比鄰邊
cot@代表鄰邊比對邊
同角三角函數(shù)的基本關系式
倒數(shù)關系: 商的關系: 平方關系:
tan cot=1
sin csc=1
cos sec=1 sin/cos=tan=sec/csc
cos/sin=cot=csc/sec sin2+cos2=1
1+tan2=sec2
1+cot2=csc2
誘導公式
sin(-)=-sin
cos(-)=cos tan(-)=-tan
cot(-)=-cot
sin(/2-)=cos
cos(/2-)=sin
tan(/2-)=cot
cot(/2-)=tan
sin(/2+)=cos
cos(/2+)=-sin
tan(/2+)=-cot
cot(/2+)=-tan
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
sin(3/2-)=-cos
cos(3/2-)=-sin
tan(3/2-)=cot
cot(3/2-)=tan
sin(3/2+)=-cos
cos(3/2+)=sin
tan(3/2+)=-cot
cot(3/2+)=-tan
sin(2)=-sin
cos(2)=cos
tan(2)=-tan
cot(2)=-cot
sin(2k)=sin
cos(2k)=cos
tan(2k)=tan
cot(2k)=cot
(其中kZ)
兩角和與差的三角函數(shù)公式 萬能公式
sin(+)=sincos+cossin
sin(-)=sincos-cossin
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
tan+tan
tan(+)=------
1-tan tan
tan-tan
tan(-)=------
1+tan tan
2tan(/2)
sin=------
1+tan2(/2)
1-tan2(/2)
cos=------
1+tan2(/2)
2tan(/2)
tan=------
1-tan2(/2)
半角的正弦、余弦和正切公式 三角函數(shù)的降冪公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2=2sincos
cos2=cos2-sin2=2cos2-1=1-2sin2
2tan
tan2=-----
1-tan2
sin3=3sin-4sin3
cos3=4cos3-3cos
3tan-tan3
tan3=------
1-3tan2
三角函數(shù)的和差化積公式 三角函數(shù)的積化和差公式
+ -
sin+sin=2sin---cos---
2 2
+ -
sin-sin=2cos---sin---
2 2
+ -
cos+cos=2cos---cos---
2 2
+ -
cos-cos=-2sin---sin---
2 2 1
sin cos=-[sin(+)+sin(-)]
2
1
cos sin=-[sin(+)-sin(-)]
2
1
cos cos=-[cos(+)+cos(-)]
2
1
sin sin=- -[cos(+)-cos(-)]
2
化asin bcos為一個角的一個三角函數(shù)的形式(輔助角的三角函數(shù)的公式)
初三數(shù)學全套知識點總結 9
1.二次根式:一般地,式子叫做二次根式.
注意:(1)若這個條件不成立,則不是二次根式;
(2)是一個重要的非負數(shù),即;0.
2.重要公式:(1),(2)
3.積的算術平方根:
積的算術平方根等于積中各因式的算術平方根的積;
4.二次根式的乘法法則:.
5.二次根式比較大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大小;
(3)分別平方,然后比大小.
6.商的算術平方根:,
商的算術平方根等于被除式的算術平方根除以除式的算術平方根.
7.二次根式的除法法則:
(1);(2);
(3)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎?
8.最簡二次根式:
(1)滿足下列兩個條件的二次根式,叫做最簡二次根式,
、 被開方數(shù)的因數(shù)是整數(shù),因式是整式,
、 被開方數(shù)中不含能開的盡的因數(shù)或因式;
(2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;
(3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;
(4)二次根式計算的最后結果必須化為最簡二次根式.
10.同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式.
12.二次根式的混合運算:
(1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學過的,在有理數(shù)范圍內(nèi)的一切公式和運算律在二次根式的混合運算中都適用;
(2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉化為分母有理化或約分更為簡便;使用乘法公式等.
【初三數(shù)學全套知識點總結】相關文章:
初三數(shù)學的知識點總結04-25
數(shù)學初三的知識點總結04-25
初三數(shù)學知識點總結04-25
初三數(shù)學重要知識點總結04-25
初三數(shù)學全部知識點總結04-25
初三數(shù)學上冊知識點總結12-20
初三數(shù)學期中知識點總結04-26
數(shù)學初三重點知識點總結04-25